Loading...
Please wait, while we are loading the content...
Similar Documents
Structure, magnetic, and photocatalysis of La0.7Sr0.3MO3 (M = Mn, Co, and Fe) perovskite nanoparticles: Novel photocatalytic materials.
| Content Provider | Europe PMC |
|---|---|
| Author | Ghozza, Mohamed H. Yahia, Ibrahim S. Hussien, Mai S. A. |
| Abstract | The present study, La0.7Sr0.3MO3 (M = Mn-, Co-, and Fe-), perovskite, has successfully been synthesized via co-precipitation and sol–gel auto-combustion. XRD, SEM, and EDX characterized the prepared samples. XRD and SEM showed that the as-prepared La0.7Sr0.3MnO3 and La0.7Sr0.3CoO3 have multiphase. La0.7Sr0.3FeO3, in comparison, is nanosized, has a single-phase perovskite, and has a rather homogenous particle size distribution. Additionally, EDX mapping analysis shows that all pieces are distributed uniformly. According to X-ray diffractometer results, all calcined powders contain 100% LSF, more than 15% perovskite phase of LSC, 47% LSM, and other secondary phases, such as cobalt oxide. Aِt room temperature and magnetic field of ± 20 kG, La0.7Sr0.3MnO3 exhibited weak ferromagnetic behavior in a low magnetic field, whereas diamagnetic behavior was seen in a high magnetic field. La0.7Sr0.3FeO3 samples behave as strong ferromagnetic. On the contrary, the photodegradation of La0.7Sr0.3MnO3 is 99% compared to 75% and 91% for other samples under UVC lights of wavelength = 254 nm. The degradation rate for La0.7Sr0.3MnO3 is 0.179 higher, about 3.25 and 2.23, than the other samples. A La0.7Sr0.3MnO3 nanocomposite performs as a photocatalyst to enhance the efficiency of methylene blue photodegradation. This study boosts good UVC photocatalysts with high efficiency for different kinds of dyes. Hence, the catalyst possessed high stability and efficiency for continuous wastewater treatment. |
| ISSN | 09441344 |
| Volume Number | 30 |
| PubMed Central reference number | PMC10163091 |
| Issue Number | 21 |
| PubMed reference number | 37052839 |
| Journal | Environmental Science and Pollution Research International [Environ Sci Pollut Res Int] |
| e-ISSN | 16147499 |
| DOI | 10.1007/s11356-023-26411-9 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2023-04-13 |
| Publisher Place | Berlin/Heidelberg |
| Access Restriction | Open |
| Rights License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2023 |
| Subject Keyword | La0.7Sr0.3MO3 (M = Mn Co And Fe) Nanoscale perovskites Sol–gel/auto combustion/co-precipitation methods XRD/SEM Hysteresis/magnetization Photocatalysis process |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Chemistry Pollution Health, Toxicology and Mutagenesis Medicine |