Loading...
Please wait, while we are loading the content...
Mapping quantitative trait loci for biomass yield and yield-related traits in lowland switchgrass (Panicum virgatum L.) multiple populations.
| Content Provider | Europe PMC |
|---|---|
| Author | Shrestha, Surya L Tobias, Christian M Bhandari, Hem S Bragg, Jennifer Nayak, Santosh Goddard, Ken Allen, Fred |
| Editor | Brown, P |
| Copyright Year | 2023 |
| Abstract | AbstractSwitchgrass can be used as an alternative source for bioenergy production. Many breeding programs focus on the genetic improvement of switchgrass for increasing biomass yield. Quantitative trait loci (QTL) mapping can help to discover marker-trait associations and accelerate the breeding process through marker-assisted selection. To identify significant QTL, this study mapped 7 hybrid populations and one combined of 2 hybrid populations (30–96 F1s) derived from Alamo and Kanlow genotypes. The populations were evaluated for biomass yield, plant height, and crown size in a simulated-sward plot with 2 replications at 2 locations in Tennessee from 2019 to 2021. The populations showed significant genetic variation for the evaluated traits and exhibited transgressive segregation. The 17,251 single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS) were used to construct a linkage map using a fast algorithm for multiple outbred families. The linkage map spanned 1,941 cM with an average interval of 0.11 cM between SNPs. The QTL analysis was performed on evaluated traits for each and across environments (year and location) that identified 5 QTL for biomass yield (logarithm of the odds, LOD 3.12–4.34), 4 QTL for plant height (LOD 3.01–5.64), and 7 QTL for crown size (LOD 3.0–4.46) (P ≤ 0.05). The major QTL for biomass yield, plant height, and crown size resided on chromosomes 8N, 6N, and 8K explained phenotypic variations of 5.6, 5.1, and 6.6%, respectively. SNPs linked to QTL could be incorporated into marker-assisted breeding to maximize the selection gain in switchgrass breeding. |
| Page Count | 10 |
| Volume Number | 13 |
| PubMed Central reference number | PMC10151402 |
| Issue Number | 5 |
| PubMed reference number | 36947434 |
| Journal | G3 (Bethesda) |
| e-ISSN | 21601836 |
| DOI | 10.1093/g3journal/jkad061 |
| Language | English |
| Publisher | Oxford University Press |
| Publisher Date | 2023-05-01 |
| Publisher Place | US |
| Access Restriction | Open |
| Rights License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. © The Author(s) 2023. Published by Oxford University Press on behalf of the Genetics Society of America. |
| Subject Keyword | bioenergy biomass environment genome hybrid phenotype plant genetics and genomics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Genetics Molecular Biology Genetics (clinical) |