Loading...
Please wait, while we are loading the content...
Effects of liquid surface tension on gas capillaries and capillary forces at superamphiphobic surfaces.
| Content Provider | Europe PMC |
|---|---|
| Author | Eriksson, Mimmi Claesson, Per M. Järn, Mikael Wallqvist, Viveca Tuominen, Mikko Kappl, Michael Teisala, Hannu Vollmer, Doris Schoelkopf, Joachim Gane, Patrick A. C. Mäkelä, Jyrki M. Swerin, Agne |
| Abstract | The formation of a bridging gas capillary between superhydrophobic surfaces in water gives rise to strongly attractive interactions ranging up to several micrometers on separation. However, most liquids used in materials research are oil-based or contain surfactants. Superamphiphobic surfaces repel both water and low-surface-tension liquids. To control the interactions between a superamphiphobic surface and a particle, it needs to be resolved whether and how gas capillaries form in non-polar and low-surface-tension liquids. Such insight will aid advanced functional materials development. Here, we combine laser scanning confocal imaging and colloidal probe atomic force microscopy to elucidate the interaction between a superamphiphobic surface and a hydrophobic microparticle in three liquids with different surface tensions: water (73 mN m-1), ethylene glycol (48 mN m-1) and hexadecane (27 mN m-1). We show that bridging gas capillaries are formed in all three liquids. Force-distance curves between the superamphiphobic surface and the particle reveal strong attractive interactions, where the range and magnitude decrease with liquid surface tension. Comparison of free energy calculations based on the capillary menisci shapes and the force measurements suggest that under our dynamic measurements the gas pressure in the capillary is slightly below ambient. |
| Journal | Scientific Reports [Sci Rep] |
| Volume Number | 13 |
| DOI | 10.1038/s41598-023-33875-9 |
| PubMed Central reference number | PMC10133270 |
| Issue Number | 1 |
| PubMed reference number | 37100810 |
| e-ISSN | 20452322 |
| Language | English |
| Publisher | Nature Publishing Group |
| Publisher Date | 2023-04-26 |
| Publisher Place | London |
| Access Restriction | Open |
| Subject Keyword | Chemical physics Thermodynamics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Multidisciplinary |