Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | Directory of Open Access Journals (DOAJ) |
---|---|
Author | Qinyu Jiang Faliang Chang Bowen Sheng |
Abstract | Bearing fault diagnosis is an important technique in industrial production as bearings are one of the key components in rotating machines. In bearing fault diagnosis, complex environmental noises will lead to inaccurate results. To address the problem, bearing fault classification methods should be capable of noise resistance and be more robust. In previous studies, researchers mainly focus on noise-free condition, measured signal and signal with simulated noise, many effective approaches have been proposed. But in real-world working condition, strong and complex noises are often leads to inaccurate results. According to the situation, this work focuses on bearing fault classification under the influence of factory noise and the white Gaussian noise. In order to eliminate the noise interference and take the possible connection between signal frames into consideration, this paper presents a new bearing fault classification method based on convolutional neural networks (CNNs). By using the sensitivity to impulse of spectral kurtosis (SK), noises are repressed by the proposed filtering approach based on the SK. Mel-frequency cepstral coefficients (MFCC) and delta cepstrum are extracted as the feature by the reason of satisfactory performance in sound recognition. And in consideration of the connection between frames, a feature arrangement method is presented to transfer feature vectors to feature images, so the advantages of the CNNs in the fields of image processing can be exploited in the proposed method. The proposed method is demonstrated to have strong ability of classification under the interference of factory noise and the Gaussian noise by experiments. |
e-ISSN | 21693536 |
DOI | 10.1109/ACCESS.2019.2919126 |
Journal | IEEE Access |
Volume Number | 7 |
Language | English |
Publisher | IEEE |
Publisher Date | 2019-01-01 |
Publisher Place | United States |
Access Restriction | Open |
Subject Keyword | Electrical Engineering. Electronics. Nuclear Engineering Bearing Fault Convolutional Neural Network Fault Diagnosis Spectral Kurtosis |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|