Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | Directory of Open Access Journals (DOAJ) |
---|---|
Author | Salar Jarhan Saeed Samadianfard Ely Salwana Amir Mosavi Shahaboddin Shamshirband Shatirah Akib |
Abstract | Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow prediction. This paper aims to identify models with higher accuracy, robustness, and generalization ability by inspecting the accuracy of a number of machine learning models. The proposed models for river flow include support vector regression (SVR), a hybrid of SVR with a fruit fly optimization algorithm (FOA) (so-called FOASVR), and an M5 model tree (M5). Additionally, the influence of periodicity (π) on the forecasting enactment was examined. To assess the performance of the proposed models, different statistical meters were implemented, including root mean squared error (RMSE), mean absolute error (MAE), correlation coefficient (R), and Bayesian information criterion (BIC). Results showed that the FOASVR with RMSE (4.36 and 6.33 $m^{3}$/s), MAE (2.40 and 3.71 $m^{3}$/s) and R (0.82 and 0.81) values had the best performance in forecasting river flows at Babarud and Vaniar stations, respectively. Also, regarding BIC parameters, $Q_{t−1}$ and π were selected as parsimonious inputs for predicting river flow one month ahead. Overall findings indicated that, although both the FOASVR and M5 predicted the river flows in suitable accordance with observed river flows, the performance of the FOASVR was moderately better than the M5 and periodicity noticeably increased the performance of the models; consequently, FOASVR can be suggested as the most accurate method for forecasting river flows. |
e-ISSN | 20734441 |
DOI | 10.3390/w11091934 |
Journal | Water |
Issue Number | 9 |
Volume Number | 11 |
Language | English |
Publisher | MDPI AG |
Publisher Date | 2019-09-01 |
Publisher Place | Switzerland |
Access Restriction | Open |
Subject Keyword | Hydraulic Engineering Water Supply for Domestic and Industrial Purposes Deep Learning Hydro-informatics River Flow Forecasting Stream Flow Hybrid Machine Learning M5 Model Tree Fruit Fly Optimization Algorithm (foa) Support Vector Regression Big Data |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|