Loading...
Please wait, while we are loading the content...
Similar Documents
The Quickest Transshipment Problem (1995)
| Content Provider | CiteSeerX |
|---|---|
| Author | Tardos, Éva |
| Description | Proc. 6th Annual ACM-SIAM Symp. Discrete Algorithms |
| Abstract | A dynamic network consists of a graph with capacities and transit times on its edges. The quickest transshipment problem is defined by a dynamic network with several sources and sinks; each source has a specified supply and each sink has a specified demand. The problem is to send exactly the right amount of flow out of each source and into each sink in the minimum overall time. Variations of the quickest transshipment problem have been studied extensively; the special case of the problem with a single sink is commonly used to model building evacuation. Similar dynamic network flow problems have numerous other applications; in some of these, the capac-ities are small integers and it is important to find integral flows. There are no polynomial-time algorithms known for most of these problems. In this paper we give the first polynomial-time algorithm for the quickest transshipment problem. Our algorithm provides an integral optimum flow. Previously, the quickest transship-ment problem could only be solved efficiently in the special case of a single source and single sink. 1 |
| File Format | |
| Publisher Date | 1995-01-01 |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |