Loading...
Please wait, while we are loading the content...
Similar Documents
Specialized Orthonormal Frames and Embedding ⋆
| Content Provider | CiteSeerX |
|---|---|
| Author | Estabrook, Frank B. |
| Abstract | Abstract. We discuss some specializations of the frames of flat orthonormal frame bundles over geometries of indefinite signature, and the resulting symmetries of families of embedded Riemannian or pseudo-Riemannian geometries. The specializations are closed sets of linear constraints on the connection 1-forms of the framing. The embeddings can be isometric, as in minimal surfaces or Regge–Teitelboim gravity, or torsion-free, as in Einstein vacuum gravity. Involutive exterior differential systems are given, and their Cartan character tables calculated to express the well-posedness of the underlying partial differential embedding and specialization equations. Key words: embedding; orthonormal frames; Cartan theory 2010 Mathematics Subject Classification: 83C20; 57R40; 58A15 1 |
| File Format | |
| Access Restriction | Open |
| Subject Keyword | Involutive Exterior Differential System Linear Constraint Connection 1-forms Partial Differential Embedding Orthonormal Frame Cartan Theory Specialization Equation Regge Teitelboim Gravity Flat Orthonormal Frame Bundle Pseudo-riemannian Geometry Specialized Orthonormal Frame Minimal Surface Indefinite Signature Mathematics Subject Classification Cartan Character Table Einstein Vacuum Gravity Closed Set |
| Content Type | Text |
| Resource Type | Article |