Loading...
Please wait, while we are loading the content...
Similar Documents
On the growth rate of the weight distribution of irregular doubly-generalized LDPC codes (2008)
| Content Provider | CiteSeerX |
|---|---|
| Author | Flanagan, Mark F. Paolini, Enrico Fossorier, Marc P. C. |
| Description | In this paper, an expression for the asymptotic growth rate of the number of small linear-weight codewords of irregular doubly-generalized LDPC (D-GLDPC) codes is derived. The expression is compact and generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Ensembles with check or variable node minimum distance greater than 2 are shown to be asymptotically good, while for other ensembles a fundamental parameter is identified which discriminates between an asymptotically small and an asymptotically large expected number of small linear-weight codewords. Also, in the latter case it is shown that the growth rate depends only on the check and variable nodes with minimum distance 2. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes. Finally, it is shown that the analysis may be extended to include the growth rate of the stopping set size distribution of irregular D-GLDPC codes. in Proc. 2008 Allerton Conf. on Communications, Control & Computing |
| File Format | |
| Language | English |
| Publisher Date | 2008-01-01 |
| Access Restriction | Open |
| Subject Keyword | Irregular Doubly-generalized Ldpc Weight Distribution Gldpc Code Small Linear-weight Codewords Irregular Doubly-generalized Ldpc Code Variable Node Latter Case Size Distribution Irregular D-gldpc Code Variable Node Minimum Distance Important Connection Asymptotic Growth Rate D-gldpc Code Fundamental Parameter Growth Rate Minimum Distance New Result Stability Condition |
| Content Type | Text |
| Resource Type | Article |