Loading...
Please wait, while we are loading the content...
Similar Documents
ENTROPY, TRIANGULATION, AND POINT LOCATION IN PLANAR SUBDIVISIONS (2009)
| Content Provider | CiteSeerX |
|---|---|
| Author | Morin, Pat Iacono, John Langerman, Stefan Dujmović, Vida Collette, Sébastien |
| Abstract | A data structure is presented for point location in connected planar subdivisions when the distribution of queries is known in advance. The data structure has an expected query time that is within a constant factor of optimal. More specifically, an algorithm is presented that preprocesses a connected planar subdivision G of size n and a query distribution D to produce a point location data structure for G. The expected number of point-line comparisons performed by this data structure, when the queries are distributed according to D, is ˜ H + O ( ˜ H2/3 + 1) where ˜ H = ˜ H(G, D) is a lower bound on the expected number of point-line comparisons performed by any linear decision tree for point location in G under the query distribution D. The preprocessing algorithm runs in O(n log n) time and produces a data structure of size O(n). These results are obtained by creating a Steiner triangulation of G that has near-minimum entropy. |
| File Format | |
| Publisher Date | 2009-01-01 |
| Access Restriction | Open |
| Subject Keyword | Query Time Near-minimum Entropy Steiner Triangulation Point Location Data Structure Expected Number Query Distribution Data Structure Preprocessing Algorithm Point Location Planar Subdivision Linear Decision Tree Connected Planar Subdivision Point Location Point-line Comparison Constant Factor |
| Content Type | Text |