Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Erol, Anil Lockette, Paris Von Frecker, Mary |
| Copyright Year | 2018 |
| Abstract | Multi-layered, self-actuated devices have been the focus of recent studies due to their ability to exhibit large displacements and achieve complex shapes. Such devices have been constructed using active materials responsive to varying stimuli including electro-active and magneto-active materials to perform useful functions or satisfy objective functions related to target shapes. In this work, the authors seek to study the utility of employing materials responsive to magnetic and electric fields in combination with passive materials, and with varied placement in discrete layers and segments through a flexible beam, to design structures capable of satisfying a variety of objective functions simultaneously. These multi-field responsive composite devices, with greater complexity of the embedded combined actuation mechanisms, are able to achieve a wider variety of target shapes compared to traditional unimorph/bimorph structures actuated by a single-field. Additionally, the increased actuation design space facilitates consideration of a wider range of possible objective functions including those related to power consumption, materials’ cost, and work performed. Fabrication of these devices for experimentation is both time-consuming and expensive. As a result, this study will utilize an existing one-dimensional model for electromagnetically-actuated composites and expand its features to include segmentation: the arbitrary placement of any active or passive material type in any layer of a given arbitrarily-sized section of the beam. Ultimately, the goal of this study is to analyze the model by varying characteristic features of multi-field actuated, multi-layered, and segmented devices undergoing large displacements under simultaneously applied fields. Although the model is written arbitrarily for any number of segments, layers within segments, and material types, this study focuses on a base model comprising three material types: electroactive polymer, magneto-active elastomer, and a passive substrate. The initial parameters chosen for the study are the relative lengths (length ratio) of segments, volume of magnetic material, and stiffness of passive material. Two objective functions are chosen. The first is a target shape approximation function, dependent on the errors between the displacements of the computed and the desired shapes. The second calculates a cost based on volume of magnetic material. The effects of the parameters on the objective functions are analyzed by evaluating an array of combinations of parameters; results indicate that each parameter significantly influences the multi-field actuation of the beam, and these correlations are quantitatively analyzed and compared. Concurrently, metrics of power required, structure mass, and other important factors are quantified. As a result, this analysis serves as a precursor to a formal optimization algorithm by determining the usefulness of the chosen objective functions and corresponding input variables for these devices, while also identifying other possible metrics for the design optimization of a multi-field beam. |
| Sponsorship | Aerospace Division |
| File Format | |
| ISBN | 9780791851944 |
| DOI | 10.1115/SMASIS2018-8215 |
| Volume Number | Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation |
| Conference Proceedings | ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems |
| Language | English |
| Publisher Date | 2018-09-10 |
| Publisher Place | San Antonio, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Energy consumption Approximation Elastomers Optimization algorithms Optimization Composite building materials Conducting polymers Design Errors Image segmentation Composite materials Active materials Magnetic materials Stiffness Manufacturing Shapes Electric fields |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|