Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Anderson, Walter Eshghinejad, Ahmadreza Elahinia, Mohammad |
| Copyright Year | 2011 |
| Abstract | Intelligent materials have been the subject of research for many years. Shape memory alloys (SMAs) are a type of intelligent material that has been targeted for many different uses; such as actuators, sensors and structural supports. SMAs are attractive as actuators due to their large energy density. Although a great deal of information is available on the axial load capacity and on the tip force for SMA tweezer-like devices, there is not enough information about the load capacity at mid-span, especially at the macro-level. Imposed displacement at mid-span experimental evaluation of an SMA beam in the austenitic and martensitic regimes has been studied. To this end, a specimen of near equi-atomic nitinol was heat-treated (shape set) into a ‘U’ shape and loaded into a custom test fixture such that the boundary conditions of the beam are approximated as roller-roller; and the sample was deformed at different temperatures while reaction forces were measured. The displacement is near maximum displacement of the U shape without causing a change in concavity, thus full-scale capacity is shown. Additionally, Unified Model (finite element) predictions of the experimental response are also presented, with good agreement. Due to the robust nature of the Unified Model, geometric parameter variations (wire diameter and radius of curvature) were then simulated to encompass the design envelop for such an actuator. The material properties needed as inputs to the Unified Model were obtained from constant temperature tensile tests of a specimen subjected to the same heat treatment (shape set straight). The resultant critical stresses were then extracted using the tangent method similar to the one described in ASTM F-2082. It is worth noting that the specimen was trained before the stress value extraction, but the transversely loaded specimen was not trained due to the difficulty involved (inherent uneven stress distribution). The contribution of this work is the presentation of experimental results for transverse (mid-span) loading of a nitinol wire and the simulation results allowing for design of a proper actuator with known constraints on force, displacement or temperature (2 of 3 needed). In other words, this work could be used as a type of 3D look-up table; e.g. for a desired force/displacement, the required temperatures are given. Future work includes developing a sensor-less control strategy for simultaneous force/displacement control. |
| Sponsorship | Aerospace Division |
| Starting Page | 251 |
| Ending Page | 260 |
| Page Count | 10 |
| File Format | |
| ISBN | 9780791854723 |
| DOI | 10.1115/SMASIS2011-5097 |
| Volume Number | ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2 |
| Conference Proceedings | ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems |
| Language | English |
| Publisher Date | 2011-09-18 |
| Publisher Place | Scottsdale, Arizona, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Actuators Stress concentration Temperature Shape memory alloys Rollers Wire Density Displacement Stress Smart materials Design Astm international Heat Simulation results Nickel titanium alloys Materials properties Boundary-value problems Finite element analysis Shapes Sensors Heat treating (metalworking) |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|