Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Scott, M. Cummings |
| Copyright Year | 2008 |
| Abstract | The measured wheel/rail forces from four wheels in the leading truck of a coal hopper car during one revenue service roundtrip were used to by the Wheel Defect Prevention Research Consortium (WDPRC) to predict rolling contact fatigue (RCF) damage. The data was recorded in March 2005 by TTCI for an unrelated Strategic Research Initiatives project funded by the Association of American Railroads (AAR). RCF damage was predicted in only a small portion of the approximately 4,000 km (2,500 miles) for which data was analyzed. The locations where RCF damage was predicted to occur were examined carefully by matching recorded GPS and train speed/distance data with track charts. RCF is one way in which wheels can develop tread defects. Thermal mechanical shelling (TMS) is a subset of wheel shelling in which the heat from tread braking reduces a wheel’s fatigue resistance. RCF and TMS together are estimated to account for approximately half of the total wheel tread damage problem [1]. Other types of tread damage can result from wheel slides. The work described in this paper is concerning pure RCF, without regard to temperature effects or wheel slide events. It is important that the limitations of the analysis in this paper are recognized. The use of pre-existing data that was recorded two years prior to the analysis ruled out the possibility of determining the conditions of the track when the data was recorded (rail profile, friction, precise track geometry). Accordingly, the wheel/rail contact stress was calculated with an assumed rail crown profile radius of 356-mm (14 inches). RCF was predicted using shakedown theory, which does not account for wear and is the subject of some continuing debate regarding the exact conditions required for fatigue damage. The data set analyzed represents the wheel/rail forces from two wheelsets in a single, reasonably well maintained car. Wheelsets in other cars may produce different results. With this understanding, the following conclusions are made. - RCF damage is predicted to accumulate only at a small percentage of the total distance traveled. - RCF damage is predicted to accumulate on almost every curve 4 degrees or greater. - RCF damage is primarily predicted to accumulate while the car is loaded. - RCF damage is predicted to accumulate more heavily on the wheelset in the leading position of the truck than the trailing wheelset. - No RCF damage was predicted while the test car was on mine property. - Four unique curves (8 degrees, 7 degrees, 6 degrees, and 4 degrees) accounted for nearly half of the predicted RCF damage of the loaded trip. In each case, the RCF damage was predicted to accumulate on the low-rail wheel of the leading wheelset. - Wayside flange lubricators are located near many of the locations where RCF damage was predicted to accumulate, indicating that simply adding wayside lubricators will not solve the RCF problem. - The train was typically being operated below the balance speed of the curve when RCF damage was predicted to occur. - The worst track locations for wheel RCF tend to be on curves of 4 degrees or higher. For the route analyzed in this work, the worst locations for wheel RCF tended to be bunched in urban areas, where tight curvature generally prevails. |
| Sponsorship | Rail Transportation Division |
| Starting Page | 43 |
| Ending Page | 51 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791843345 |
| DOI | 10.1115/RTDF2008-74013 |
| e-ISBN | 9780791838334 |
| Conference Proceedings | ASME 2008 Rail Transportation Division Fall Technical Conference |
| Language | English |
| Publisher Date | 2008-09-24 |
| Publisher Place | Chicago, Illinois, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Impact Wheel Thermal mechanical shelling Shell Rolling contact fatigue Fatigue Rolling contact Wheels Wheelsets |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|