Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | James, P. Jackson, M. Birkett, P. Madew, C. |
| Copyright Year | 2017 |
| Abstract | Defect tolerance assessments are carried out to support the demonstration of structural integrity for high integrity components such as nuclear reactor pressure vessels. These assessments often consider surface-breaking defects and assess Stress Intensity Factors (SIFs) at both the surface and deepest points. This can be problematic when there is a high stress at the surface, for example due to the stress concentration at the root of a screw thread. In the past this has led to the development of complex and costly 3D finite element analyses to calculate more accurate SIFs, and still resulting in small apparent limiting defect sizes based on initiation at the surface point. Analysis has been carried out along with supporting materials testing, to demonstrate that the increased SIF at the surface point is offset by a reduction in crack-tip constraint, such that the material exhibits a higher apparent fracture toughness. This enables a more simplistic assessment which reduces the effective SIF at the surface such that only the SIF at the deepest point needs to be considered. This then leads to larger calculated limiting defect sizes. This in turn leads to a more robust demonstration of structural integrity, as the limiting defect sizes are consistent with the capability of non-destructive examination techniques. The high SIF at the surface location, and the concomitant reduction in crack-tip constraint, meant that it was not possible to demonstrate the material response with conventional tests, such as those using shallow-notched bend specimens. Instead it was necessary to develop modified specimens in which semielliptical defects were introduced into a geometry which replicated the notch acuity at the root of a screw thread. These feature tests were used to demonstrate the principle, prior to testing with more conventional specimens to fit more accurately the parameters required to represent the material response in a defect tolerance assessment. Margins in defect tolerance assessments are usually measured against the initiation of tearing, even though the final failure for the material may occur at a higher load following stable crack extension. This work measured and assessed the benefit of reduced crack-tip constraint on both the point of initiation and on the development of the tearing resistance curve. This demonstrated that the effect of constraint was valid with tearing for this material and that there was additional margin available beyond the onset of tearing. The feature test geometry also provided evidence of the tearing behaviour at the surface and deepest points of a surrogate component under representative loading. This paper provides an overview of the range of tests performed and the post-test interpretation performed in order to provide the R6 α and k constraint parameters. |
| Sponsorship | Pressure Vessels and Piping Division |
| File Format | |
| ISBN | 9780791857991 |
| DOI | 10.1115/PVP2017-65351 |
| Volume Number | Volume 6A: Materials and Fabrication |
| Conference Proceedings | ASME 2017 Pressure Vessels and Piping Conference |
| Language | English |
| Publisher Date | 2017-07-16 |
| Publisher Place | Waikoloa, Hawaii, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Materials testing Stress concentration Screw threads Fracture (materials) Stress Fracture toughness Geometry Nondestructive evaluation Pressure vessels Finite element analysis Nuclear reactors Failure Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|