Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
---|---|
Author | Gordon, K. Shek Don, R. Metzger |
Copyright Year | 2011 |
Abstract | The Zr-2.5Nb pressure tubes of CANDU reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, hydrided region formation and fracture at a flaw or crack tip. The threshold stress intensity for DHC initiation from a crack, KIH, is an important material parameter for assessing DHC initiation from flaws in pressure tubes. KIH is used to determine whether DHC initiation may occur from flaws which are postulated as crack-like. It is also an input parameter in the engineering process-zone methodology to assess DHC initiation from blunt flaws. Tests were performed to determine the effect of hydrogen concentration in solution on KIH in unirradiated Zr-2.5 Nb material, subjected to different thermo-mechanical treatments to obtain different yield strength or hardness. Hydrogen concentration in solution represents the diffusible hydrogen available for the DHC process, and is different than the total hydrogen concentration which includes the immobile hydrogen in the zirconium hydride phase. For all material conditions, the KIH values at 250°C are significantly higher when the hydrogen concentration in solution is low. Post test metallographic examination indicates that the crack-tip hydride is large and has a taper shape when the hydrogen concentration in solution is high. This suggests that KIH is reached due to insufficient stress to crack the hydrides. When the hydrogen concentration in solution is low, the crack-tip hydride is small and KIH is reached due to limited hydride growth. Finite element diffusion analysis was performed to determine the crack tip hydride accumulation as a function of KI and hydrogen in solution. For high hydrogen concentration in solution, the model predicts a taper hydride shape and hydride lengths which are consistent with the trend observed in the experiments. Another set of KIH tests was performed at 200°C on unirradiated pressure tube material hydrided to 60 and 100 ppm hydrogen. The test results indicated that KIH is controlled by the hydrogen in solution and is not affected by the amount of hydrogen in bulk hydrides. |
Sponsorship | Pressure Vessels and Piping Division |
Starting Page | 1287 |
Ending Page | 1295 |
Page Count | 9 |
File Format | |
ISBN | 9780791844564 |
DOI | 10.1115/PVP2011-57624 |
Volume Number | Volume 6: Materials and Fabrication, Parts A and B |
Conference Proceedings | ASME 2011 Pressure Vessels and Piping Conference |
Language | English |
Publisher Date | 2011-07-17 |
Publisher Place | Baltimore, Maryland, USA |
Access Restriction | Subscribed |
Subject Keyword | Fracture (process) Zirconium Precipitation Hydrogen Yield strength Fracture (materials) Shapes Finite element analysis Pressure Diffusion (physics) Stress Thermomechanical treatment |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|