Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Antunes, Jose Delaune, Xavier Piteau, Philippe |
| Copyright Year | 2011 |
| Abstract | The vibrations of multi-supported tubes subjected to flow excitation have been the subject of active research for many years, in particular connected with the critical design of heat exchangers and fuel bundles of nuclear power facilities. Because tubes are often loosely supported, their nonlinear dynamics are conveniently addressed through time-domain numerical simulations, for the predictive analysis with respect to wear and fatigue. Turbulence is one of the main excitation mechanisms which drive tube vibrations. We recently revisited the problem of random excitation generation in the time domain, for transverse flows. A new simplified an efficient technique was developed, which properly emulates the spectral and spatial features of the turbulence force field. Results were successfully compared with those from another generation method based on the classical work by Shinozuka and co-workers. In the present paper, we extend our previous work by modeling the time-domain random excitation from flows which display a significant axial velocity component, leading to the convection of turbulence fluctuations. This problem has been addressed by many authors in the past, mainly focusing on linear analysis in the frequency domain, for flow-excited plates, pipes and tubes. Here, for the purpose of nonlinear analysis, we focus on two techniques for generating time-domain turbulence excitations which properly account for the effects of the axial transport term in convective flows. We start by extending our original random force generation method, in order to emulate axial turbulent flows. For the purpose of physical discussion and computational efficiency evaluation, we also implemented an updated version of Shinozuka’s excitation generation technique. We discuss the use of random forces applied at fixed locations, but also investigate the use of axially convected travelling forces. The practical significance of the cross-spectral convection term is evaluated for pure axial and mixed flows. Finally, because time-domain dynamical simulations of practical interest are usually two-dimensional, we discuss the correlation of the orthogonal random forces generated along the motion directions, when simulating two-dimensional turbulence fields. |
| Sponsorship | Pressure Vessels and Piping Division |
| Starting Page | 129 |
| Ending Page | 140 |
| Page Count | 12 |
| File Format | |
| ISBN | 9780791844540 |
| DOI | 10.1115/PVP2011-57162 |
| Volume Number | Volume 4: Fluid-Structure Interaction |
| Conference Proceedings | ASME 2011 Pressure Vessels and Piping Conference |
| Language | English |
| Publisher Date | 2011-07-17 |
| Publisher Place | Baltimore, Maryland, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Nonlinear dynamics Turbulence Vibration Computer simulation Random excitation Fatigue Heat exchangers Fuels Flow (dynamics) Modeling Convection Design Nuclear power Simulation Wear Fluctuations (physics) Plates (structures) Excitation Engineering simulation Pipes Random vibration |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|