Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Rudolph, Ju¨rgen Bergholz, Steffen |
| Copyright Year | 2008 |
| Abstract | The prevention of fatigue damages in components is a major responsibility during the entire operation of every nuclear power plant. Hence, fatigue is a central concern of AREVA’s R&D activities in the view of changing boundary conditions: modification of the code based approaches, life-time extension, new plants with scheduled operating periods of 60 years (e.g. EPR, BWR1000) and improvement of disposability. Simultaneously, an integrated approach to the fatigue issue is the way to an optimization of costs and plant operation as well as a minimization of non-destructive testing requirements. The AREVA fatigue concept provides for a multiple step process against fatigue before and during the entire operation of nuclear power plants. Indeed, fatigue analyses are undertaken at the design stage and for Plant LIfe Management & Plant License EXtension (PLIM-PLEX) activities. The quality of all fatigue analyses crucially depends on the determination of the real operational loads including the high loads of the initial start-up in the commissioning phase. It has to be pointed out that mainly thermal transient loading is fatigue relevant for nuclear power plant components. AREVA utilizes a measuring system called FAMOS (Fatigue Monitoring System) recording the real transient loading continuously on site. The direct processing of the measured temperatures is used for a first fast fatigue estimation after every operational cycle. This procedure is highly automated and allows for a rough estimation of the recent partial usage factor as well as the qualitative comparability of the data (loads, fatigue damage increment). In the framework of the decennial Periodic Safety Inspection (PSI) a detailed fatigue check conforming to the code rules (e.g. [1, 2, 3]) is carried out in order to determine the current state of the plant. This fatigue check is based on the real loads (specification of thermal transient loads based on measurements) and finite element analyses in connection with the local strain approach to design against fatigue. The finite element analyses always include transient thermal determination of the temperature field and subsequent determination of (local) stresses and strains. The latter analyses might be simplified elastic plastic or fully elastic plastic. Another Code requirement is the additional check against progressive plastic deformation (ratcheting) which is demanded by the design code (e.g. [1, 2, 3]). In the case of the elastic plastic approach much care has to be taken with respect to the application of an appropriate material law. Advanced nonlinear kinematic material laws are favored at AREVA at the present time in order to carry out realistic ratcheting simulations. One alternative to this approach is the application of the so called direct method based on the shake down theorems [25]. As a conclusion, one essential benefit of the integrated AREVA fatigue concept can easily be identified: Locations of potential fatigue failure are reliably identified and all efforts can be concentrated on these fatigue critical components. Thus, expensive costs for inspection can be essentially reduced. Of course, one requirement is the application of a temperature measurement system in the power plant. The concept itself is supported and its further development is ensured by numerous R&D activities, derived methods and tools as well as the further development of design codes. For example, it is planned to integrate direct measurements of fatigue damage, more sophisticated analysis concepts for fatigue damage (application of short crack fracture mechanics to fatigue crack growth), to combine fatigue damage monitoring and models for 3D crack growth simulation and to develop an alternative approach of high cycle fatigue initiation based on damage models in the integrated AREVA concept. |
| Sponsorship | Pressure Vessels and Piping |
| Starting Page | 115 |
| Ending Page | 125 |
| Page Count | 11 |
| File Format | |
| ISBN | 9780791848241 |
| DOI | 10.1115/PVP2008-61897 |
| e-ISBN | 0791838285 |
| Volume Number | Volume 1: Codes and Standards |
| Conference Proceedings | ASME 2008 Pressure Vessels and Piping Conference |
| Language | English |
| Publisher Date | 2008-07-27 |
| Publisher Place | Chicago, Illinois, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Cycles Temperature Theorems (mathematics) Deformation Fracture mechanics Fatigue analysis Licensing Optimization Design Nondestructive evaluation Sustainability Kinematics Power stations Safety Damage High cycle fatigue Fatigue design Inspection Fatigue Surface roughness Fatigue failure Fracture (materials) Stress Transients (dynamics) Temperature measurement Simulation Monitoring systems Boundary-value problems Finite element analysis Nuclear power stations Fatigue cracks Fatigue damage |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|