Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Franco-Nava, Jose´ Manuel Dorantes-Go´mez, Oscar Rosado-Tamariz, Erik Ferna´ndez-Da´vila, Jose´ Manuel Rangel-Espinosa, Reynaldo |
| Copyright Year | 2009 |
| Abstract | Application of two mayor design tools, Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD), for the performance improvement of a 76 MW Francis turbine runner is presented. In order to improve the performance of the runner, not only a CFD based optimization for the runner but also its structural integrity evaluation was carried out. In this paper, a number of analyses included within the design tools-based runner optimization process are presented. Initially, a reference condition for the fluid behaviour through turbine components was carried out by means of the computation of fluid conditions through the spiral case and stays vanes, followed by CFD-based fluid behaviour for the wicket so as to include the flow effects induced by these components in the final CFD analysis for the runner. All CFD computations were generated within the three dimensional Navier-Stoke commercial turbomachinery oriented CFD code FINE™/Turbo from NUMECA. The whole hydraulic turbine performance was then compared against actual data from a medium-head Francis type hydro turbine (76 MW). Then, CFD-based flow induced stresses in the turbine runner were computed by using a three dimensional finite element model built within the FEA commercial code ANSYS. Appropriate boundary conditions were set in order to obtain the results due to the different type loads (pressure and centrifugal force). The FEM model was able to capture the pressure gradients on the blade surfaces obtained from the CFD results. Improvement of efficiency and power for the runner was computed by using a parametric model built within 3D CFD code integrated environment FINETM/Design3D from NUMECA which combines genetic algorithms and a trained artificial neural network. During the optimization process the artificial neural network is trained with a database of geometries and their respective CFD computations in order to determine the optimum geometry for a given objective function. The optimisation process and the trend curve of the optimization or design cycle that included 29 parameters (corresponding to the control points of runner blade primary sections) which could vary during the process is presented. Finally, the flow induced stresses of the optimized Francis turbine runner was computed so as to evaluate the final blade geometry modifications related to the efficiency and power improvement. |
| Sponsorship | Power Division |
| Starting Page | 293 |
| Ending Page | 300 |
| Page Count | 8 |
| File Format | |
| ISBN | 9780791843505 |
| DOI | 10.1115/POWER2009-81201 |
| e-ISBN | 9780791838536 |
| Conference Proceedings | ASME 2009 Power Conference |
| Language | English |
| Publisher Date | 2009-07-21 |
| Publisher Place | Albuquerque, New Mexico, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Francis runner Computational fluid dynamics Energy improvement Optimization Hydraulic turbine Cycles Blades Turbomachinery Francis turbines Pressure gradient Genetic algorithms Design Hydraulic turbines Fluids Finite element model Databases Centrifugal force Turbochargers Turbine components Turbines Artificial neural networks Flow (dynamics) Pressure Stress Geometry Computation Boundary-value problems Finite element analysis |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|