Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Segawa, Kiyoshi Shikano, Yoshio Takano, Tsuyoshi |
| Copyright Year | 2004 |
| Abstract | A higher efficiency gain is necessary for steam turbine plants to reduce their fuel consumption rate and lessen their environmental disruption factor. Power plant manufacturers have continued to make an effort to raise steam turbine internal efficiency by developing new technologies. High pressure (HP) steam turbines should have increased efficiency owing to relatively shorter blade height compared with other turbine sections (intermediate and low pressure turbines). In order to increase efficiency, it is important to improve the steam path determined by design parameters such as degree of reaction, number of stages and rotor diameter and to develop a high performance blade applied to it. The advanced computational fluid dynamics (CFD) technique is a useful design tool, and has come to be applied generally to evaluate energy loss. A new rotating blade has been developed for small and mid-class steam turbines with a shorter blade height. The robust design method, based on the statistical theory for design of experiments, is used for the blade root profile design. It is combined with the inverse method and 2-D turbulent blade-to-blade flow analysis to evaluate the aerodynamic performance. The blade configuration is expressed by four control factors, which are turning angle, leading edge radius, pitch-chord ratio and maximum blade loading location. Linear cascade experiments are also carried out due to verify the blade performance under the optimized conditions obtained by the robust design. Consequently, the blade section has a blunt-nose, flat incidence characteristics and low energy loss, compared with the conventional one and the optimized conditions given by the robust design are aerodynamically reasonable. Finally, air turbine model tests and 3-D Reynolds-averaged Navier-Stokes analyses are performed to investigate the detailed flow pattern and stage performance of the new optimized reaction blade. An experimental investigation is still important to evaluate the performance in the real turbine stage structure, while the numerical analysis method is used based on the implicit TVD scheme with the modified k-ε turbulence model. It is found that the new optimized reaction blade has greatly improved stage efficiency of about 1.5% at the design point including the effect of leakage flow (3% improvement in stage efficiency excluding leakage flow) and realized an increase of pitch-chord ratio by about 35%. Consequently, the new optimized reaction blade is considered effective to raise the internal efficiency of the high-pressure steam turbine with improved steam path. |
| Sponsorship | Power Division |
| Starting Page | 307 |
| Ending Page | 314 |
| Page Count | 8 |
| File Format | |
| ISBN | 0791841626 |
| DOI | 10.1115/POWER2004-52110 |
| Conference Proceedings | ASME 2004 Power Conference |
| Language | English |
| Publisher Date | 2004-03-30 |
| Publisher Place | Baltimore, Maryland, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Turbulence Blades Computational fluid dynamics Design methodology Cascades (fluid dynamics) Rotors Rotating blades Fuel consumption Steam turbines Flow (dynamics) Pressure Turning angles Design High pressure (physics) Numerical analysis Energy dissipation Experimental design Chords (trusses) Steam Power stations Leakage flows Turbines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|