Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Ezeakacha, Chinedum Peter Salehi, Saeed Kiran, Raj |
| Copyright Year | 2018 |
| Abstract | Water-based drilling mud is one of the commonly used fluid systems for drilling operations. The loss of drilling fluid in porous media and fractured formations have been one of the industry’s focus in the past decades. However, the dynamics and constantly changing wellbore conditions push the boundaries for more research into accurate quantification and mitigation methods for fluid loss. In the design and development of drilling fluids, most test conditions are kept constant during fluids property testing. Drilling fluid loss and rheological parameters are determined experimentally at constant test conditions, and according to the combination of mud additives, rather than a comprehensive approach. In addition, conventional methods of quantifying drilling fluid loss properties for field application can be is time-consuming, considering that multiple factors impact fluid loss. This study presents a statistical engineering approach for pore-scale characterization of water-based mud (WBM) invasion. The methods used in this research are: special case of factorial design of experiment (DoE), analysis of variance (ANOVA), and regression. Important field parameters based on previous studies and industry recommendations were carefully integrated in the DoE and result analyses. These parameters include but not limited to: porous media type, temperature, type of lost circulation material (LCM), concentration of LCM, drilling string rotary speed, and eccentricity. Ceramic filter tubes were used for the first set of experiments and Upper Grey sandstone rock samples were used for the second set of experiments. The statistical analyses performed in this study were based on a 95% confidence interval (CI). The results show that for single factor interpretation, increase in temperature and rotary speed increased dynamic fluid invasion significantly. Increase in LCM concentration resulted to a significant decrease in fluid invasion. LCM concentration and rotary speed interaction revealed a significant decrease in fluid invasion. LCM concentration and temperature interaction significantly increased fluid invasion. Rotary speed and temperature interaction also increased fluid invasion significantly. The three-factor interaction effect of LCM concentration, rotary speed, and temperature was not significant in reducing fluid invasion. For the conditions used in this study, the regression analysis showed that dynamic fluid invasion in Upper Grey sandstone can be explained from variation in LCM concentration and rotary speed. The results and methods from this study can provide reliable information for drilling fluids design and selecting operating conditions for field application. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791851296 |
| DOI | 10.1115/OMAE2018-78328 |
| Volume Number | Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology |
| Conference Proceedings | ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2018-06-17 |
| Publisher Place | Madrid, Spain |
| Access Restriction | Subscribed |
| Subject Keyword | Drilling Water Temperature Statistical analysis Rheology Porous materials Regression analysis String Design Fluids Ceramic filters Experimental design Dynamics (mechanics) Rocks Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|