Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Marit, I. Kvittem Berthelsen, Petter Andreas Eliassen, Lene Thys, Maxime |
| Copyright Year | 2018 |
| Abstract | Hydrodynamic model tests and numerical simulations may be combined in a complementary manner during the design and qualification of new offshore structures. In the EU H2020 project LIFES50+ (lifes50plus.eu), a model test campaign of floating offshore wind turbines using Real-Time Hybrid Model (ReaTHM) testing techniques was carried out at SINTEF Ocean in fall 2017. The present paper focuses on the process of calibrating a numerical model to the experimental results. The concepts tested in the experimental campaign was a 1:36 scale model of the public version of the 10MW OO-Star Wind Floater semi-submersible offshore wind turbine. A time-domain numerical model was developed based on the as-built scale model. The hull was considered as rigid, while bar elements were used to model the mooring system and tower in a coupled finite element approach. First-order frequency-dependent added mass, potential damping, and excitation forces/moments were evaluated across a range of frequencies using a panel method. Distributed viscous forces on the hull and mooring lines were added to the numerical model according to Morison’s equation. Potential difference-frequency excitation forces were also included by applying Newman’s approximation. The quasi static properties of the mooring system were assessed by comparing the restoring force and maximum line tension with the pull-out test. Drag coefficients for the line segments were estimated by imposing the measured fairlead motion from model tests as forced displacement and comparing the calculated and measured dynamic line tension. The linear and viscous damping coefficients were first estimated based on the decay tests, and the tuned damping coefficients were compared to initial guesses based on the Reynolds and Keulegan-Carpenter number at model scale. The results were then applied in the numerical model, and simulations in extreme irregular waves were compared to the experiments. It was found that second order drift forces proved to be significant, particularly for the severe irregular seastate. These could not be modelled correctly applying the potential drift forces together with quadratic damping matrix tuned to the free decay test. And the model with viscous drag coefficients tuned to decay tests also underestimated the slow drift motions. Thus, new viscous drag coefficients were determined to match the low frequency platform response. To inverstigate the performance of the tuned model, comparisons were made for a moderate seastate and for a simulation with both waves and wind on an operating turbine. In the end, possible further improvements to the modelling were suggested. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791851319 |
| DOI | 10.1115/OMAE2018-77826 |
| Volume Number | Volume 10: Ocean Renewable Energy |
| Conference Proceedings | ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2018-06-17 |
| Publisher Place | Madrid, Spain |
| Access Restriction | Subscribed |
| Subject Keyword | Damping Wind Approximation Computer simulation Oceans Mooring Offshore structures Calibration Drag (fluid dynamics) Waves Modeling Displacement Hull Design Morison equation Simulation Offshore wind turbines Semi-submersible offshore structures Tension Wind turbines Excitation Finite element analysis Turbines Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|