Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Wiktorski, Ekaterina Sui, Dan Fjelde, Kjell Kåre Langåker, Vebjørn |
| Copyright Year | 2018 |
| Abstract | The objective of drilling a well is to prepare a clean hole without obstructions for further casing and production tubing running. Cuttings transport has always been important, but challenging process, especially when drilling long directional wells. Poor hole cleaning causes severe problems, as stuck pipe, extreme torque and drag, difficulties in casing landing, cementing, etc. Extensive studies of cuttings transport, both theoretical and experimental, have been performed to estimate, for example, cuttings concentration and cuttings slip velocity to determine optimal conditions for effective hole cleaning. This paper presents a dynamic analysis of cuttings transport in non-Newtonian fluids based on a transient drift-flux model and an associated numerical scheme AUSMV (advection upstream splitting method) developed by Evje and Fjelde 2002. In this paper, the scheme is modified to simulate cuttings transport dynamically taking into account effects related to pressure, temperature and cuttings slip. During drilling, the heat is transported from the formation into the wellbore and up to the surface. In this paper, the energy balance is enhanced by introducing an analytical temperature model into the AUSMV scheme. The temperature distribution along the well is calculated at the beginning of simulation and kept constant throughout the simulation. Additionally, the AUSMV scheme is improved by considering drilling fluid’s transport- and thermal properties. Transport properties of an oil-based mud, such as viscosity and density, are obtained from experiments. The experimental results were used to determine the coefficients in a linear density model used in the study to investigate the effect of non-Newtonian behavior on the heat transfer, cuttings transport and downhole pressure. Furthermore, a model to calculate the apparent viscosity at various pressures and temperatures was developed based on the experimental results and used to evaluate the impact of viscous forces on the cuttings distribution in the well. Presented numerical scheme solves dynamic cuttings transport problems taking into account the slip velocity variation with wellbore geometry, operational (controllable) parameters and formation properties. In comparison to the traditional steady-state models, the transient cuttings transport model with integrated depth-dependent parameters gives a possibility to achieve a more realistic simulation of cuttings transport, distribution and accumulation along the wellbore through the time. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791851296 |
| DOI | 10.1115/OMAE2018-77386 |
| Volume Number | Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology |
| Conference Proceedings | ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2018-06-17 |
| Publisher Place | Madrid, Spain |
| Access Restriction | Subscribed |
| Subject Keyword | Drilling Viscosity Temperature distribution Temperature Torque Dynamic analysis Drag (fluid dynamics) Density Pressure Steady state Non-newtonian fluids Transients (dynamics) Energy budget (physics) Geometry Thermal properties Heat Simulation Tubing Wells Pipes Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|