Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Yoshimoto, Haruki Yoshida, Hisafumi Kamizawa, Ken |
| Copyright Year | 2018 |
| Abstract | In recent years, the social demands for the introduction of renewable energy are increasing, demonstration projects of floating offshore wind power generation are being implemented and planned around the world. In Japan, a demonstration project named Fukushima FORWARD (Fukushima Floating Offshore Wind Farm Demonstration Project) has been conducted since 2011. Fukushima FORWARD is carried out by the Ministry of Economy, Trade and Industry. The project is the world’s first floating offshore windfarm with a total capacity of 14 MW, including three floating offshore wind facilities and one floating offshore substation. In Fukushima FORWARD, Japan Marine United Corporation is in charge of floater part EPCI (Engineering, Procurement, Construction and Installation) of one floating offshore wind facility and one floating offshore substation. This floating offshore substation is installed in order to observe meteorological and oceanographic data and motion data as well as boosting the generated electric power. Since the installation in 2013 it continues to record various kinds of continuous data. The substation is an advanced spar type floater moored by four spread catenary mooring lines. In the design of the mooring system for offshore structure, the motion of the structure under environmental external force is very important. The motion of the moored floating structure is divided into wave frequency motion, which is a motion of a relatively short period, and low frequency motion caused by mooring restoring force and variable external force, both of which are important elements in the design. Among them, wave frequency motion is known to be accurately estimated by potential theory as a result of research on various types of structures. On the other hand, in addition to the existence of various calculation methods including time domain analysis, its statistical characteristic and applicability are entirely depending on the target structure. Also, observation data of low frequency motion have been very few. In this paper, long-term data observed at the floating offshore substation in Fukushima FORWARD was analyzed with focusing on low frequency motion and its statistical properties were clarified. Furthermore, we analyzed the low frequency wave force spectrum and motion by conventional low frequency motion theory using the wave drifting force calculated by the potential theory. And, we compared the calculated value with the analysis result of the observation data and validated the applicability of the simplified low frequency motion theory. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791851258 |
| DOI | 10.1115/OMAE2018-77201 |
| Volume Number | Volume 6: Ocean Space Utilization |
| Conference Proceedings | ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2018-06-17 |
| Publisher Place | Madrid, Spain |
| Access Restriction | Subscribed |
| Subject Keyword | Economics Wind Computational methods Construction Japan Mooring Offshore structures 2011 Fukushima nuclear disaster Floating structures Time-domain analysis Electricity (physics) Spar platforms Design Renewable energy Wave drift forces Wave frequency Potential theory (physics) Wind farms Ocean engineering Wave forces Wind power Wing spars Meteorology |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|