Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Aronsen, K. H. Huang, Z. Y. Skaugset, K. B. Larsen, C. M. |
| Copyright Year | 2017 |
| Abstract | This paper discusses results from an experiment where forces on a rigid cylinder are measured during prescribed oscillations both in-line with and transverse to a constant flow. Two “figure of eight” oscillation patterns with identical shape but opposite orbital direction, relative to the flow, have been tested at a Reynolds number of 24000. Results show that the hydrodynamic force acting on the cylinder is significantly different for the two orbital directions. The force in phase with velocity, which represents the energy transfer between the fluid and the cylinder, has opposite sign and different magnitude for the two orbital directions. Flow visualization by particle image velocimetry (PIV) reveals that the two orbits leads to different vortex shedding modes. Hydrodynamic forces at multiples of the oscillation frequency, known as higher harmonics, are seen for both orbital directions. Comparison with pure in-line and pure transverse oscillations indicates that the higher harmonics are related to oscillations in in-line direction. A three-dimensional Large Eddy Simulation numerical simulation with equivalent experiment parameters has been conducted. It is very encouraging to see a good agreement between numerical results and observations with respect to global forces, vortex shedding modes and hydrodynamic co-efficients. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791857649 |
| DOI | 10.1115/OMAE2017-62404 |
| Volume Number | Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV |
| Conference Proceedings | ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2017-06-25 |
| Publisher Place | Trondheim, Norway |
| Access Restriction | Subscribed |
| Subject Keyword | Vortex shedding Computer simulation Reynolds number Oscillations Fluid-dynamic forces Flow (dynamics) Vortex-induced vibration Energy transformation Fluids Large eddy simulation Particulate matter Flow visualization Shapes Cylinders |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|