Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Zhang, Xiaodong Low, Ying Min Koh, Chan Ghee |
| Copyright Year | 2017 |
| Abstract | Offshore riser systems are subjected to wind, wave and current loadings, which are random in nature. Nevertheless, the current deterministic based design and analysis practice could not quantitatively evaluate the safety of structures taking random environmental loadings into consideration, due to high computational costs. Structural reliability method, as an analysis tool to quantify probability of failure of components or systems, can account for uncertainties in environmental conditions and system parameters. It is particularly useful in cases where limited experience exists or a risk-based evaluation of design is required. Monte Carlo Simulation (MCS) method is the most widely accepted method and usually used to benchmark other proposed reliability methods. However, MCS is computationally demanding for predicting low failure probabilities, especially for offshore dynamic problems involving many types of uncertainties. Innovative structural reliability methods are desired to perform reliability analysis, so as to predict the low failure probabilities associated with extreme values. Variety of structural reliability methods are proposed in the literature to reduce the computational burden of MCS. The post processing methods, which recover PDF or tail distribution of random variable from sample data to perform structural reliability analysis, have great advantages over the methods from other categories on solving engineering problems. Thus the main focus of our study is on post processing structural reliability methods. In this paper, four post processing reliability methods are compared on the prediction of low failure probabilities with applications to a drilling riser system and a steel catenary riser (SCR) system: Enhanced Monte Carlo Simulation (EMCS) assumes the failure probability follows the asymptotic behavior and uses high failure probabilities to predict low failure probabilities; Multi-Gaussian Maximum Entropy Method (MGMEM) assumes the probability density function (PDF) is a summation of Gaussian density functions and adopts maximum entropy methods to obtain the model parameters; Shifted Generalized Lognormal Distribution (SGLD) method proposes a distribution that specializes to the normal distribution for zero skewness and is able to assume any finite value of skewness for versatility; and Generalized Extreme-Value Distribution method (GEV) comprises three distribution families: the Gumbel-type, Frechet-type and Weibull-type distribution. The study compares the bias errors (the difference between the predicted values and the exact values) and variance errors (the variability of the predicted values) of these methods on the prediction of low failure probabilities with applications to two riser systems. This study could provide offshore engineers and researchers feasible options for marine riser system structural reliability analysis. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791857663 |
| DOI | 10.1115/OMAE2017-61574 |
| Volume Number | Volume 3B: Structures, Safety and Reliability |
| Conference Proceedings | ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2017-06-25 |
| Publisher Place | Trondheim, Norway |
| Access Restriction | Subscribed |
| Subject Keyword | Uncertainty Marine drilling risers Probability Event history analysis Gaussian distribution Risk Entropy Density Log normal distribution Wind waves Pipeline risers Design Errors Steel catenary risers Simulation Ocean engineering Engineers Safety Reliability Failure |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|