Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Onno, A. J. Peters Huijsmans, René H. M. |
| Copyright Year | 2017 |
| Abstract | In Heavy Marine Transport, it is common practice to dry-transport large and heavy floating offshore structures. In general, loading and discharge of these floating cargoes on- and from heavy transport vessels is done at sheltered locations, like harbors, where sea-state and swell conditions are insignificant. Often these locations are at large distance from operating fields of the offshore structures, which means that the structures need to be towed from- or to these fields. To save time and costs, it is beneficial to perform the loading and discharge operations in the field. This necessitates a reconsideration of the maximum allowable wave conditions such as to perform the loading- and discharge operations within specified time frame whilst ensuring safety of crew, cargo and heavy transport vessel. Therefore accurate prediction tools to determine the relative motions between heavy transport vessel and cargo are required. In the past, studies have shown that standard prediction tools over-estimate relative vertical motions compared to model tests and practical experience. This paper discusses the prediction of relative vertical motion, which is dominated by the phenomenon squeeze flow. From model tests and CFD calculations non-linear hydrodynamic loads related to squeeze flow are recognized. Standard linearized solutions do not cover the non-linear loads and therefore result in a lack of accuracy in predicting the relative vertical motions. Linearized solutions assume small motion amplitudes with respect to characteristic dimensions of the flow problem; in the case of squeeze flow this assumption is not valid as the motion amplitude may be in the same order as the gap between cargo bottom and the deck of the heavy transport vessel. With linearized potential solvers it is found that the added mass is strongly dependent on the gap height, which verifies the analytical work of Molin et al. [1]. Following the work of Molin, the change in added mass due to changing gap height gives a large contribution to the non-linear hydrodynamic load. Additionally, a second important contribution is related to the relative vertical velocity, recognized as a drag component. As such, a non-linear formulation is found which can be used in a time-domain approach. This formulation requires gap-height dependent added mass as found using the linearized potential solver. As potential solvers are known to have difficulty dealing with the small gap, different methods have been investigated. Results of model tests and CFD calculations are shown, which are used to tune the non-linear formulation. Tuning is done by adapting the drag component. Furthermore, results of a multi-body problem based on standard linear hydrodynamics and the non-linear formulation are compared. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791857632 |
| DOI | 10.1115/OMAE2017-61306 |
| Volume Number | Volume 1: Offshore Technology |
| Conference Proceedings | ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2017-06-25 |
| Publisher Place | Trondheim, Norway |
| Access Restriction | Subscribed |
| Subject Keyword | Seas Computational fluid dynamics Offshore structures Vessels Dimensions Hydrodynamics Marine transportation Drag (fluid dynamics) Flow (dynamics) Waves Stress Ocean engineering Safety |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|