Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Oliveira, Nara Bisaggio, Helio Netto, Theodoro |
| Copyright Year | 2016 |
| Abstract | Oil and gas offshore pipelines are one of the main components of a subsea system. A major accident can have a great economic impact due to loss of revenue and the expenses involving actions to mitigate damages to the environment. Therefore, investment in accident prevention through a carefully designed inspection and maintenance plan is necessary. In this scenario, many companies have changed their procedures to ensure the structural integrity of their pipelines — from a model that incorporates empirical safety factors and periodic inspections to another, based on methods that consider concepts of structural reliability to establish risk based inspections. The collapse pressure of pipelines containing corrosion defects is usually predicted by deterministic methods, either numerically or through empirical formulations. The severity of each individual corrosion defect can be determined by comparing the differential pressure during operation with the estimated collapse pressure. However, loads and resistance parameters have uncertainties which define the basic reliability problem. These uncertainties are related to the geometric and material parameters of the pipe and the operational conditions. In recent years, many studies have been developed using reliability concepts in order to predict the probability of failure of a corroded pipeline at any given time. The main problem in assuring the integrity and safe operation of pipelines lies in obtaining the necessary accurate prediction of their future condition. A simple deterministic procedure for estimating the collapse pressure of pipes with narrow and long defects has been recently proposed by Netto (2010). This formulation was based on a combined small-scale experimental program and nonlinear numerical analyses accounting for different materials and defect geometries. Probabilistic failure analyses of pipelines considering different failure mechanisms have been performed by different authors over the last decade. Limit state functions similar to the mentioned above, coupled with reliability algorithms such as the first-order second-moment (FOSM) iterative method, the Monte Carlo integration method, and the first-order and second-order reliability methods (FORM/SORM) are generally used. The analyses take into account the natural spread of material properties, geometric and operational parameters, and the uncertainties associated with the sizing of eventual corrosion defects. In this paper, Netto’s deterministic formulation and the crude Monte Carlo method were used to obtain the reliability of corroded pipelines under external hydrostatic pressure. This approach provides a method to predict the probability of collapse of a corroded pipeline along its operational life. It applies concepts of structural reliability to evaluate the detrimental effect of corrosion damages, giving the basis to develop a risk based maintenance strategy. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| File Format | |
| ISBN | 9780791849965 |
| DOI | 10.1115/OMAE2016-54299 |
| Volume Number | Volume 5: Pipelines, Risers, and Subsea Systems |
| Conference Proceedings | ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2016-06-19 |
| Publisher Place | Busan, South Korea |
| Access Restriction | Subscribed |
| Subject Keyword | Uncertainty Pipelines Accounting Monte carlo methods Crude oil Failure analysis Materials properties Risk-based maintenance Safety Damage Iterative methods Failure Failure mechanisms Collapse Inspection Probability Maintenance Pressure Risk-based inspection Stress Algorithms Numerical analysis Corrosion Hydrostatic pressure Ocean engineering Reliability Pipes Underwater pipelines Accidents |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|