Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Xiao, Wenting Liu, Yuming Dick, K. P. Yue |
| Copyright Year | 2009 |
| Abstract | We describe an investigation of the occurrence, statistics, and generation mechanisms of rogue wave in the open sea using direct three-dimensional phase-resolved nonlinear wavefield simulations. To achieve this we develop an efficient nonlinear wavefield simulation capability based on the high-order spectrum method which solves the primitive phase-resolved Euler equations. The simulations account for nonlinear wave-wave interactions up to an arbitrary high order in the wave steepness and are capable of accounting for effects of bottom bathymetry, variable current, and direct physics-based models for wind input and wave breaking dissipation. We apply direct large-scale simulations to obtain a large number of phase-resolved nonlinear wavefields, initially specified by directional wave spectra. The typical spatial-temporal domain size of such numerical nonlinear wavefields is O(103 km2) over evolution time of O(hr). These spatial and temporal scales account for quartet resonant interactions and partially for quintet resonant interactions among wave components in the wavefield. From the simulated nonlinear wavefields, rogue wave events are identified and their occurrence statistics are studied. It is shown that the classic linear theory (i.e. Rayleigh distribution) significantly underestimates the rogue wave occurrence. Second-order theory improves the Rayleigh prediction, but still underestimates the rogue wave occurrence in wavefields with moderately large wave steepness and relatively narrow directional spreading and spectrum bandwidth. The influence of key wave spectrum parameters (such as significant wave height, directional spreading, effective steepness, and spectrum bandwidth) on the rogue wave occurrence is analyzed. The classification of rogue waves according to their configuration is also obtained. The key characteristics of a rogue wave or rogue wave group in terms of kinematics and surface structure are analyzed and quantified. The nonlinear wave simulations, which provide full three-dimensional kinematics and dynamics of rogue wave events, provide a powerful tool for understanding the underlying mechanisms of their generation. They are elucidated by specific examples. |
| Sponsorship | Ocean, Offshore and Arctic Engineering Division |
| Starting Page | 575 |
| Ending Page | 583 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791843468 |
| DOI | 10.1115/OMAE2009-80039 |
| e-ISBN | 9780791838440 |
| Volume Number | Volume 6: Materials Technology; C.C. Mei Symposium on Wave Mechanics and Hydrodynamics; Offshore Measurement and Data Interpretation |
| Conference Proceedings | ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering |
| Language | English |
| Publisher Date | 2009-05-31 |
| Publisher Place | Honolulu, Hawaii, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Nonlinear waves Wind Seas Accounting Statistics as topic Waves Physics Simulation Spectra (spectroscopy) Dynamics (mechanics) Energy dissipation Kinematics Resonance Significant wave heights |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|