Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Waikar, R. A. Guo, Y. B. |
| Copyright Year | 2007 |
| Abstract | Surface topography induced by precision machining is critical for component performance. This paper is to study the synergistic effects of work materials, machining processes, and tool geometry on the geometrical surface quality. Four representative surface topographies of turned and ground surfaces were prepared at “extreme” machining conditions (gentle and abusive) and compared in terms of 3-dimensional (3D) surface features of amplitude, area and volume, spatial, and hybrid parameters. The 3D surface topography maps revealed the anisotropic and repeatable nature of a turned surface which was in sharp contrast with the random and isotropic nature of a ground surface. In general, a gentle turned surface has higher values of amplitude parameters (arithmetic mean, root mean square, maximum height of summits, maximum depth of valleys, and ten-point height) than an abusively turned surface, whereas the opposite was true for the ground counterparts. Only the gentle ground surface has a negative skewness which means that the topography distribution is more biased towards the valley side. The larger kurtosis value of the abusively ground surface implies a more peaked surface topography. The gentle ground and abusively turned surfaces have a much larger bearing area ratio and therefore better bearing capacity than the gentle turned and abusively ground ones. The abusively ground surface has higher fluid retainability than other surfaces in terms of mean void volume. |
| Sponsorship | Manufacturing Division |
| Starting Page | 975 |
| Ending Page | 983 |
| Page Count | 9 |
| File Format | |
| ISBN | 0791842908 |
| DOI | 10.1115/MSEC2007-31086 |
| e-ISBN | 0791838099 |
| Conference Proceedings | ASME 2007 International Manufacturing Science and Engineering Conference |
| Language | English |
| Publisher Date | 2007-10-15 |
| Publisher Place | Atlanta, Georgia, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Turning Grinding Surface topography Geometry Load bearing capacity Fluids Anisotropy Bearings Machining Surface quality |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|