Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Xiaohong, Hao Guan, Jiqing Zhao, Jingbo |
| Copyright Year | 2016 |
| Abstract | As the rapid growing of the semiconductor logic gate number and operation speed, the heat dissipated from electronic devices increases drastically. Moreover, most of the heat flux can reach about 100 W/cm2, therefore efficient removal of the heat from the electronic devices is essential to ensure the reliable operation of the electronic devices. The traditional direct cooling system, such as air cooling, liquid cooling, would not be able to transfer the high heat flux owing to their heat transfer limits, so advanced cooling solutions are necessary. The flat heat pipes have some advantages, such as small scale, strong heat transfer capacity, low weight penalty and low environmental requirements, therefore, in recent years, researchers have shown great interest for the flat heat pipe. But most of them played the important on the structure design of the flat heat pipes, and few of them focused on the study of the effect of the working fluid on the heat transfer performance. In this paper, a flat heat pipe with rectangular channel is designed and manufactured, and an experimental set up was built to study working fluid on the effects of the flat heat Pipe thermal performance. The flat heat pipe is heated via a 35mmx20mm rectangular electrical resistance (the evaporator side), and the other side (the condenser side) is cooled by convection of a heat sink. In the experimental work, three types of working fluid are used in the heat pipe: (A) deionized water, (B) deionized water-based Fe3O4 nano fluid (1, 1.5wt%). A comparison is performed for the thermal performance of different size flat heat pipe. Finally, the experimental results showed that nano fluid could improve the thermal performance of the FHP. With the same charge volume, the heat transfer coefficient of the FHPs filled with nano fluid were higher than that of DI water. There was an optimal mass concentration which was estimated to be 1.5 wt% to achieve the maximum heat transfer enhancement. |
| Sponsorship | Heat Transfer Division |
| File Format | |
| ISBN | 9780791849668 |
| DOI | 10.1115/MNHMT2016-6496 |
| Volume Number | Volume 2: Micro/Nano-Thermal Manufacturing and Materials Processing; Boiling, Quenching and Condensation Heat Transfer on Engineered Surfaces; Computational Methods in Micro/Nanoscale Transport; Heat and Mass Transfer in Small Scale; Micro/Miniature Multi-Phase Devices; Biomedical Applications of Micro/Nanoscale Transport; Measurement Techniques and Thermophysical Properties in Micro/Nanoscale; Posters |
| Conference Proceedings | ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer |
| Language | English |
| Publisher Date | 2016-01-04 |
| Publisher Place | Biopolis, Singapore |
| Access Restriction | Subscribed |
| Subject Keyword | Flat heat pipes Water Semiconductors (materials) Cooling Condensers (steam plant) Nanofluids Electrical resistance Cooling systems Heat flux Convection Design Fluids Heat Gates (closures) Magnetite Heat pipes Weight (mass) Heat sinks Heat transfer coefficients Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|