Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Beck, B. Terry Aaron, A. Robertson Naga, Narendra B. Bodapati Robert, J. Peterman Wu, Chih-Hang John Kyle, A. Riding |
| Copyright Year | 2016 |
| Abstract | Accurate unbiased assessment of transfer length for prestressed concrete railroad ties requires detailed knowledge of the longitudinal variation of geometrical cross-section parameters responsible for establishing the resulting surface strain profile. This is because the complex cross-sectional shape produces a non-uniform strain plateau region, which makes the accurate evaluation of transfer length more difficult. In particular, human judgment of a “plateau region” for assessment of the average maximum strain becomes subject to large uncertainty, and clearly this procedure cannot be used in any type of automated in-plant transfer length diagnostics. The important geometrical tie parameters include the cross-sectional area, centroid, moment of inertia, and the eccentricity of the prestressing wires. If a CAD drawing is available, this information can be digitally extracted from the CAD model representation of the crosstie. In fact, this digital extraction has been done and has already been in use for some time in assessing transfer length for one of the common crosstie manufacturer designs. However, current research efforts are investigating the characteristics of existing crossties which have been in track for many years, for which CAD drawings of the original designs are unlikely to be available. The objective of the current research is to develop a comprehensive understanding of the material characteristics that have caused splitting failures in prestressed concrete railroad ties, and those characteristics that have resulted in ties that have performed well after many years in track. As part of this effort, a three-dimensional (3D) Optical Scanning System is being used to accurately scan and quantify the surface geometry of previously manufactured ties that have been in service, so as to produce an accurate 3D CAD model for later analysis associated with the above long-term research objectives. For the initial phase of this work, a sample from the CXT crossties of known geometrical characteristics that were subjected to representative long-term loading at the TTCI Facility in Pueblo Colorado, was scanned so as to accurately map out detailed 3D tie surface geometry. These ties were cast using the same concrete materials but with different prestressing wires, and were all subjected to the same extreme in-track loading for a period of several years. A commercially-available 3D Laser-Based Optical Scanning System, having a maximum spatial resolution of approximately 0.1mm, was used to perform the surface scanning operations presented in this paper. The CXT tie provides a useful initial evaluation of the accuracy and general feature capture capability of the scanning procedure, since a 3D CAD model for this tie has been provided by the manufacturer. A detailed qualitative and quantitative analysis is presented which compares the 3D CXT CAD model geometry with the 3D geometry of the experimentally scanned ties. Illustrations as to how this 3D technique can reveal such features as abrasion and wear, along with the longitudinal variation of the above mentioned cross-section parameters associated with longitudinal surface strain and transfer length assessment, are included in this paper. |
| Sponsorship | Rail Transportation Division |
| File Format | |
| ISBN | 9780791849675 |
| DOI | 10.1115/JRC2016-5753 |
| Conference Proceedings | 2016 Joint Rail Conference |
| Language | English |
| Publisher Date | 2016-04-12 |
| Publisher Place | Columbia, South Carolina, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Abrasion Uncertainty Inertia (mechanics) Engineering drawings Prestressed concrete Computer-aided design Wire Geometry Concretes Three-dimensional computer-aided design Lasers Wear Railroad ties Resolution (optics) Shapes Failure |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|