Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Jacobsen, Karina Carolan, Michael Perlman, Benjamin |
| Abstract | The Federal Railroad Administration’s Office of Research and Development is conducting research into fuel tank crashworthiness. A series of impact tests are planned to measure fuel tank deformation under two types of dynamic loading conditions — blunt and raking impacts. This paper describes the results of the first set of blunt impact tests for two retired EMD F-40 locomotive fuel tanks, Tank 232 and Tank 202. On October 8, 2013 and October 9, 2013, the FRA performed impact tests on two conventional passenger locomotive fuel tanks at the Transportation Technology Center (TTC) in Pueblo, Colorado. Each fuel tank was emptied of fluid and mounted on a crash wall with the bottom surface exposed. A rail cart modified with a “rigid” indenter was released to impact the center of the bottom of each fuel tank at about 6 mph. A center-impact on Tank 232 was chosen to impact between two baffles. A center-impact on Tank 202 was chosen to impact on a baffle. In the first test, Tank 232 was impacted by the indenter at 4.5 mph. The maximum residual indentation on the bottom of the tank measured approximately 5 inches. The tank deformed across the middle longitudinal span of the tank forming a diamond-shaped indention. In the second test, Tank 202 was impacted by the indenter at 6.2 mph. The maximum residual indentation on the bottom of the tank measured approximately 1.5 inches. The bottom of the tank deformed with an “X” shape spanning out from the location of square indenter at the center of the tank. Post-test autopsies revealed the deformation of the interior structures, i.e. baffles and attachments. There was no damage to the baffles in Tank 232. Deformation to the interior structure of Tank 202 was limited to the baffle directly beneath the impact location, which folded in the area near the impact location. Material coupons were cut and tensile testing performed to determine the properties of the materials used in each tank. Prior to the test, computer models were developed from measurements taken on the test articles. Material properties were estimated based on Brinell hardness measurements. Computer analyses were conducted to determine the conditions for the test, i.e. instrumentation, location of impact, target impact speeds and to predict the deformation behavior of the tank. Post-test, the resulting stress-strain relationships for the bottom sheets and baffles of both tanks were used to update the finite element models of the two tanks. The models were also updated to reflect the actual geometry of the tanks as confirmed by measurements of the tank interiors. The results of the finite element (FE) models run at the test conditions with the updated tank details are compared with the results from the test itself. Specifically, the deformation progression and the residual dent depth are compared between the tests and the models. In accidents, fuel tanks are subjected to dynamic loading, often including a blunt or raking impact from various components of the rolling stock or trackbed. Current design practice requires that fuel tanks have minimum properties adequate to sustain a prescribed set of static load conditions. Current research is intended to increase understanding of the impact response of fuel tanks under dynamic loading. |
| Sponsorship | Rail Transportation Division |
| File Format | |
| ISBN | 9780791845356 |
| DOI | 10.1115/JRC2014-3786 |
| Conference Proceedings | 2014 Joint Rail Conference |
| Language | English |
| Publisher Date | 2014-04-02 |
| Publisher Place | Colorado Springs, Colorado, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Computers Deformation Tensile testing Diamonds Instrumentation Dynamic testing (materials) Transportation systems Railroads Finite element model Fluids Industrial research Materials properties Shapes Damage Crashworthiness Locomotives Engineering design processes Stress-strain relations Stress Geometry Rails Fuel storage Impact testing Finite element analysis Accidents |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|