Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Michal, Guillaume Davis, Bradley Østby, Erling Lu, Cheng Røneid, Sigbjørn |
| Copyright Year | 2018 |
| Abstract | The CO2SAFE-ARREST joint industry project (JIP) aims to (1) investigate the fracture propagation and arrest characteristics of steel pipelines carrying anthropogenic CO2, and (2) to investigate the dispersion of CO2 following its release into the atmosphere. The project is supported by two full-scale burst tests, each based on a layout of eight X65 grade 24″ line pipes filled with a dense-phase CO2-N2 mixture. The tests were conducted over the 2017–2018 period at the DNV GL testing site at Spadeadam, UK. An overview of both the CO2SAFE-ARREST JIP and the first full-scale burst test is provided in a companion paper (IPC2018-78517). The dispersion aspect is covered in another companion paper (IPC2018-78530). This paper presents the material properties, the design layout and the results of the first full-scale burst test. Material characterisation of the pipes available to the project and the motivation leading to the design of the layout are first presented. Six pipes had a nominal wall thickness of 13.5 mm and the remaining two pipes had a nominal wall thickness of 14.5 mm. Laboratory testing was conducted on the material at the end of each pipe section. The testing consisted of Charpy impact and Drop Weight Tear tests, capturing the upper shelf fracture energy, load-displacement curves and an assessment of the fracture surfaces. Charpy and Drop Weight Tear test energies as well as strength data are provided. The layout reflects the research focus of the project with both conventional and less conventional pipe arrangements. The test was primarily designed around 13.5 mm nominal wall thickness pipes with a 1m depth backfill and laid East-West. The design was telescopic and introduced an asymmetry with respect to the mid-point by arranging pipe sections with increasing Charpy toughness on one side and increasing yield strength on the opposite side. The fracture was initiated at half-length, across the girth weld between the ‘west’ and ‘east’ initiation pipes. A running ductile fracture ensued, followed by an arrest in the third pipe on either side of the test section. Experimental data relevant to fracture velocity, decompression wave speed of the CO2-N2 mixture and pressure at the crack tip are presented. The discussion is driven from the perspective of traditional running ductile fracture control technology applied to dense-phase CO2 carrying pipelines. Emphasis is put on the analysis of the fracture velocity and transient pressure data relative to the properties of the material and CO2 mixture. The limitations of the Battelle Two-Curve Method (BTCM) traditionally used in the analysis of running ductile fracture are discussed. The design of this test was different from that used in the three full-scale burst tests conducted as part of the COOLTRANS project. The conclusions drawn here support those from the COOLTRANS project and apply to larger D/t ratios. The first CO2SAFE-ARREST test provides additional evidence that the original Battelle Two-Curve Model is not applicable to dense-phase CO2 carrying pipelines. A shift in prediction tool technology is called for. |
| Sponsorship | Pipeline Division |
| File Format | |
| ISBN | 9780791851883 |
| DOI | 10.1115/IPC2018-78525 |
| Volume Number | Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining |
| Conference Proceedings | 2018 12th International Pipeline Conference |
| Language | English |
| Publisher Date | 2018-09-24 |
| Publisher Place | Calgary, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Pipelines Carbon dioxide Control systems Fracture (materials) Wall thickness Steel Pressure Waves Displacement Stress Fracture toughness Transients (dynamics) Design Weight (mass) Materials properties Yield strength Ductile fracture Pipes Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|