Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Fazeli, Fateh Scott, Colin Saragosa, James Cicoria, Robert Fraser, Jim |
| Copyright Year | 2018 |
| Abstract | High strength, butt-welded pipeline fittings are critical components for the construction of reliable and safe pipeline systems to extract, gather and transmit oil and gas products. Due to stringent safety and environmental requirements, fittings manufacturers are obliged to adhere to commonly accepted industry standards (e.g. CSA Z245.11, MSS-SP-75) and adopt supplementary operators’ specifications. Nevertheless, there have been several recent cases where fittings delivered by qualified manufacturers and available through local stock suppliers have not met the specified tensile properties, such that they failed during hydrostatic pressure tests or in-service operations. The issue has triggered concerns of operators and regulators (e.g. NEB SA 2016-01) warning about the use of substandard fittings. Although deficiencies in engineering design or operation beyond permissible conditions could be contributing factors, the root cause of the recent fittings failures was mainly associated with the underlying metallurgy and processing resulting in critically low yield strength and/or toughness levels. Further, existing standards and specifications are not stringent enough to screen out fittings with inadequate steel composition or improper manufacturing parameters. As such, a comprehensive modelling and experimental study has been launched to understand the interplay between the composition, grade, geometry and plant-specific processing parameters of quenched and tempered pipeline components. The experiment entailed plant trials using an instrumented NPS 36″ 3D elbow to measure the actual thermal response of the fitting during reheating, quenching and tempering cycles. Data was acquired from 36 different positions on the part in order to monitor any deviations from intended production parameters. Further, the metallurgical behaviour of the base steel plate, in terms of austenite grain growth, continuous cooling transformations (CCT) and temper softening of the as-quenched microstructure, has been established by dilatometric tests and microstructural characterization. The analysis and coupling of these diverse data sets is not trivial and requires scientific-based computational modelling. An integrated thermal-structure-properties finite element model was developed to predict the temporal and spatial evolution of the microstructure and provide a 3D strength map for any as-quenched and as-tempered fitting. This predictive engineering tool aids the selection of adequate steels and suitable heat treatment parameters such that target gauges and grades can be manufactured by a given plant to meet the specified requirements and standards. This paper describes the aforementioned methodology and highlights the challenges associated with the manufacture of fittings; in particular thick-wall pipeline components. Further, guidelines and existing knowledge gaps for improved specifications and standards will be discussed. |
| Sponsorship | Pipeline Division |
| File Format | |
| ISBN | 9780791851883 |
| DOI | 10.1115/IPC2018-78431 |
| Volume Number | Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining |
| Conference Proceedings | 2018 12th International Pipeline Conference |
| Language | English |
| Publisher Date | 2018-09-24 |
| Publisher Place | Calgary, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Cycles Construction Cooling Pipelines Engineering instruments Steel Modeling Gages Tensile strength Fracture toughness Engineering design Geometry Fittings Finite element model Pipeline systems Hydrostatic pressure Engineering standards Yield strength Manufacturing Metallurgy Quenching (metalworking) Safety Failure Heat treating (metalworking) |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|