Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Lucinda, J. Smart Brady, J. Engle Leonard, J. Bond Mackenzie, John Morris, Greg |
| Copyright Year | 2016 |
| Abstract | The oil and gas industry in North America operates an aging infrastructure of pipelines, 70% of which were installed prior to 1980 and almost half of which were installed during the 1950s and 1960s. There is growing interest in having knowledge of pipe properties so that a safe operating pressure can be determined, yet there are a significant number of cases where records are incomplete. Current in-line inspection (ILI) technologies focus on defect detection and characterization, such as corrosion, cracking, and the achieved probability of detection (POD). As a part of the process in assessing defect significance it is necessary to know the pipe properties, so as to determine potential failure limits. The mechanical properties (yield strength, tensile strength and fracture toughness) of steel pipe must be known or conservatively estimated in order to safely respond to the presence of detected defects in an appropriate manner and to set the operating pressure. Material property measurements such as hardness, chemical content, grain size, and microstructure can likely be used to estimate the mechanical properties of steel pipe without requiring cut-outs to be taken from pipes for destructive tests. There are in-ditch methods of inspection available or being developed that can potentially be used to determine many of the material characteristics and at least some mechanical properties. Furthermore, there is also potential ILI data to be used for obtaining some information. Advances in ILI technologies for this purpose are currently being explored by several interested parties. ILI companies are specifically focusing on relating magnetic measurements from eddy current and magnetic flux leakage measurements to mechanical properties. ILI also regularly uses ultrasound measurements for wall thickness determination. Potential application of advances in ultrasound measurements for grain size and other properties are being explored. However, nondestructive methods of inspection in common use today usually do not enable determination of either the material or mechanical properties, leaving the only alternative to be destructive testing. This is costly, time-consuming, and often not practical for pipe that is in-service. ILI and in-situ techniques are reviewed in this paper and provide an analysis of a sample set of data is presented. The paper explores the possibility of obtaining mechanical property data from data potentially measurable by ILI and in-situ measurements. Ideally, results would allow mechanical property measurements desired to assess pipelines so as to ensure that at a specific operating pressure there is the proper response to anomalies that might pose a significant threat. The use of a multivariate regression analysis showed better results than the traditional two-variable regression plots, and may be key to determining which properties are necessary to provide the best results for reliably estimating the mechanical properties of pipe. However, there is still much work to done in understand and account for the many sources of variability within the pipe material, and how that relates to the resultant relationships between the mechanical and material properties. |
| Sponsorship | Pipeline Division |
| File Format | |
| ISBN | 9780791850275 |
| DOI | 10.1115/IPC2016-64157 |
| Volume Number | Volume 3: Operations, Monitoring and Maintenance; Materials and Joining |
| Conference Proceedings | 2016 11th International Pipeline Conference |
| Language | English |
| Publisher Date | 2016-09-26 |
| Publisher Place | Calgary, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Magnetic flux Pipelines Petroleum industry Materials properties Eddies (fluid dynamics) Failure Testing Grain size Leakage Cracking (materials) Flaw detection Eddy currents (electricity) Ditches Inspection Mechanical properties Probability Regression analysis Steel Wall thickness Pressure Tensile strength Fracture toughness Fracture (process) Corrosion Ultrasonic measurement Yield strength Pipes |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|