Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Espina-Herna´ndez, J. H. Caleyo, F. Hallen, J. M. Lo´pez-Montenegro, A. Pe´rez-Baruch, E. |
| Copyright Year | 2010 |
| Abstract | These days, in-line inspections based on the magnetic flux leakage (MFL) principle are routinely used to detect and size metal loss and mechanical anomalies in operating oil and gas pipelines. One of the characteristics of the MFL technology is that after the inspection, the pipeline wall shows a remanent magnetization. In this work, the influence of the magnetic field on pitting corrosion in pipeline steel is studied. Pitting corrosion experiments have been carried out on samples of an API 5L grade 52 steel under a magnetization level of the same order of magnitude of the remanent magnetization in the pipeline wall after the MFL inspection. The samples were magnetized using rings of the investigated steel. The closed magnetic circuit configuration used in this study survey guaranteed that the samples kept the same magnetization level during the complete duration of the conducted experiments. This experimental setup was used in order to reproduce the conditions observed in MFL-inspected pipelines in which the magnetic field was confined to the pipe wall thickness. Immediately after magnetization, the investigated samples were subjected to pitting by immersing them in a solution with dissolved Cl− and SO42− ions. The pitting experiments were conducted for exposure times of 7 days. Non-magnetized specimens were used as control samples. The depths of the pits induced in the investigated samples were measured using optical microscopy. The maximum pit depth of each sample was recorded and used to conduct extreme value analysis of the pitting process in the magnetized and non-magnetized specimens. The results of this investigation indicate that the magnetic field confined within the pipeline wall has a significant influence on the pitting corrosion process. The statistical assessment of the pitting corrosion data collected during this study shows that the magnetic field reduces the average depth of the pit population. It also reduces the extreme pit depth values that can be predicted from the maximum values observed in the magnetized samples, with respect to the non-magnetized control samples. Scanning electron microscopy observations show that the magnetic field alters the pit morphology by increasing the pit opening (mouth). It is shown that the observed reduction in the pit depth when a magnetic field is confined to the volume of the corroding material can be explained based on the behavior of the paramagnetic corrosion products under the influence of the local magnetic field gradients produced inside and within the immediate vicinity of stable pits. |
| Sponsorship | International Petroleum Technology Institute and the Pipeline Division |
| Starting Page | 565 |
| Ending Page | 572 |
| Page Count | 8 |
| File Format | |
| ISBN | 9780791844205 |
| DOI | 10.1115/IPC2010-31389 |
| e-ISBN | 9780791838853 |
| Volume Number | 2010 8th International Pipeline Conference, Volume 1 |
| Conference Proceedings | 2010 8th International Pipeline Conference |
| Language | English |
| Publisher Date | 2010-09-27 |
| Publisher Place | Calgary, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Leakage American petroleum institute Magnetic flux Scanning electron microscopy Magnetization Pipelines Circuits Metals Inspection Ions Steel Wall thickness Optical microscopy Corrosion Magnetic fields Pipes |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|