Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Fan, Xiaojing Zhang, Laibin Liang, Wei Wang, Zhaohui |
| Copyright Year | 2008 |
| Abstract | Assumptive and uncertain factors, few leak samples, complex non-linear pipeline systems are the problems often involved in the process of pipeline leak detection. Furthermore, the pressure wave changes of leakage are similar to these of valve regulation and pump closure. Thus it is difficult to establish a reliable model and to distinguish the leak signal pattern from others in pipeline leak detection. The veracity of leak detection system is limited. This paper presents a novel technique based on the statistical learning theory, support vector machine (SVM) for pipeline leak detection. Support Vector Machine (SVM) is learning system that uses a hypothesis space of linear functions in a high dimensional feature space, trained with a learning algorithm from optimization theory that implements a learning bias derived from statistical learning theory. SVM is based on the principle of structure risk minimization as opposed to the principle of empirical risk minimization in conventional techniques. Thus, SVM has good performance for classification over small sample set. In this paper, an overview of the limitations of traditional statistics and the advantage of statistical learning theory will be introduced. In this paper, an SVM classifier is used to classify the signal pattern with few samples. Firstly, the algorithm of the SVM classifier and steps of using the model to identify leakage signals are studied. Secondly, the classification results of the experiment show that SVM classifier has high recognition accuracy. In addition, SVM is compared with neural network method. Then the paper concludes that in terms of classification ability and generalization performance, SVM has clearly advantages than neural network method over small sample set, so SVM is more applicable to pipeline leak detection. |
| Sponsorship | International Petroleum Technology Institute and the Pipeline Division |
| Starting Page | 517 |
| Ending Page | 522 |
| Page Count | 6 |
| File Format | |
| ISBN | 9780791848579 |
| DOI | 10.1115/IPC2008-64118 |
| e-ISBN | 9780791838358 |
| Volume Number | 2008 7th International Pipeline Conference, Volume 1 |
| Conference Proceedings | 2008 7th International Pipeline Conference |
| Language | English |
| Publisher Date | 2008-09-29 |
| Publisher Place | Calgary, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Leakage Pipelines Artificial neural networks Risk Statistics as topic Valves Pressure Waves Optimization Support vector machines Algorithms Pipeline systems Pumps Signals |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|