Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Jing, Jiaqiang Guan, Zhongyuan Xiong, Xiaoqin Tian, Hua Tan, Liwen |
| Copyright Year | 2006 |
| Abstract | It has been proved that the flow improver makes the transportation of waxy crude oils in pipeline much more economic and safe, but so far an universal flow improver for various waxy crude oils has not been found because of inadequately understanding the action mechanism of the flow improvers. Therefore it is necessary for the mechanism to be studied further. A series of synthetic waxy oils (SWOs) with or without flow improver GY1, a long chain alkyl acrylate polymer based chemical, are prepared from 25# transformer oil, 50#, 60# (macrocrystalline) and 80# (microcrystalline) wax, single or mixed, and in some cases 60# road asphalt by mixing the ingredients at 100°C for 1 hour. Characteristic temperatures, viscosity-temperature properties and rheological behaviors are studied by using rheological techniques, and microstructures of wax crystals grown from SWOs at 20 °C are analyzed by using a polarization microscopy. Some abnormal viscosity-temperature properties of SWOs are found, which mainly results from wax crystallization and network structure formed by wax crystals. The mechanisms involved in the structure formation and fluidity improved by chemical for SWOs are discussed here. Studies show that the structure formation is followed by the formation of crystal nuclei, growth and interconnection or bridging of the wax crystal particles, which is closely relevant to wax molecular dimension and content, crystalline particle size, shape, concentration and surface characteristics. GY1 added into the SWOs lowers their cloud points by 0–2.0 °C and enhances the amounts of wax precipitated at 30 °C by 10–35wt%, which might not be involved in the mechanisms of the fluidity improving under this study. The extent of pour point depression by GY1 increases with increasing the wax molecular size and decreasing the wax content in the SWOs. As long as the SWO treated by GY1 has a greater yield stress reduction at the temperature closed to its pour point, its viscosity and pour point reduction will be more obvious. The common shortcut of pour point depression and viscosity reduction is to inhibit or desintegrate the formation of paraffin crystal network. The mechanisms involved in fluidity improvement of waxy crude oils by chemicals include modifying surface properties of waxy crystals and promoting crystal particle growth with higher symmetry. |
| Sponsorship | Pipeline Division |
| Starting Page | 561 |
| Ending Page | 570 |
| Page Count | 10 |
| File Format | |
| ISBN | 0791842614 |
| DOI | 10.1115/IPC2006-10122 |
| Volume Number | Volume 1: Project Management; Design and Construction; Environmental Issues; GIS/Database Development; Innovative Projects and Emerging Issues; Operations and Maintenance; Pipelining in Northern Environments; Standards and Regulations |
| Conference Proceedings | 2006 International Pipeline Conference |
| Language | English |
| Publisher Date | 2006-09-25 |
| Publisher Place | Calgary, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Viscosity Chain Temperature Particle size Roads Pipelines Transportation systems Polarization (electricity) Asphalt Crude oil Surface properties Shapes Polymers Oils Rheology Crystals Crystallization Dimensions Flow (dynamics) Polarization (waves) Petroleum Microscopy Polarization (light) Particulate matter Yield stress Paraffin wax |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|