Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Dumitru, I. Caruntu Reyes, Christopher |
| Copyright Year | 2018 |
| Abstract | This paper investigates the parametric resonance of electrostatically actuated MicroElectroMechanicalSystems (MEMS) cantilever resonators. The electrostatic force is modeled to include fringe effect. The MEMS consists of a cantilever over a parallel ground plate and an AC voltage between them. The actuation frequency is near first natural frequency of the cantilever beam. This leads to parametric resonance. It is of interest to investigate the amplitude frequency response of MEMS cantilever resonators. This paper uses the Homotopy Analysis Method (HAM), which is able to capture nonlinear behaviors for higher amplitudes, large parameters, and strong nonlinearities. The base method used for comparison in this work is the method of multiple scales (MMS). MMS is a perturbation method. It requires a relatively short computational time for simulations. Although the CPU time is advantageous, MMS is only accurate for weak nonlinearities and low amplitudes. It is in the interest to compare how well HAM captures the softening behavior of this system as opposed to MMS. In this paper the influences of Casimir forces and Van der Waals effects are included. Electrostatic, Van der Waals and Casimir forces are nonlinear. HAM is a deformation technique that continuously deforms the initial guess, provided to the procedure, to the exact solution. In this work the first and second order deformation equations are constructed for the equation of motion governing the behavior of the MEMS cantilever beam. In the first order deformation, HAM deviates from the solution obtained by MMS. This deviation demonstrates the power of the method to capture the softening behavior more accurately than MMS even at the 1st order deformation HAM. In the second order deformation construction, the HAM’s solution softens more than the previous, demonstrating that higher order deformation approximations result in higher accuracy. In the second order deformation, HAM contains the convergence control parameter. This parameter is chosen via the c0 curve approach. Up to 2nd order HAM deformations are evaluated for this paper. These higher order homotopy deformation solutions were developed and automated symbolically in the software Mathematica and tested numerically using Matlab software. |
| File Format | |
| ISBN | 9780791852040 |
| DOI | 10.1115/IMECE2018-88015 |
| Volume Number | Volume 4B: Dynamics, Vibration, and Control |
| Conference Proceedings | ASME 2018 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2018-11-09 |
| Publisher Place | Pittsburgh, Pennsylvania, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Microelectromechanical systems Construction Deformation Approximation Computer software Casimir force Cantilever beams Equations of motion Cantilevers Simulation Resonance Frequency response Engineering simulation Matlab |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|