Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Kyle, R. Zada Drost, M. Kevin Brian, M. Fronk |
| Copyright Year | 2015 |
| Abstract | Concentrated solar power (CSP) plants have the potential to reduce the consumption of non-renewable resources and greenhouse gas emissions in electricity production. In CSP systems, a field of heliostats focuses solar radiation on a central receiver, which is ultimately transferred to thermal electrical power plant at high temperature. However, the maximum receiver surface fluxes are low (30–100 W cm−2) with high thermal losses, which has limited the market penetration of CSP systems. Recently, small (∼ 4 cm2), laminated micro-channel devices have shown potential to achieve concentrated surface fluxes over 100 W cm−2 using supercritical CO2 as the working fluid. The present study explores the feasibility of using these microscale devices as building blocks for a megawatt scale (250 MW thermal) open solar receiver. This allows for a modular design of the central receiver with non-standard shapes customized to the heliostat field. The results show that the microscale unit-cells have the potential to be scaled to megawatt applications while providing high heat flux and thermal efficiency. At the design incident flux and surface emissivity, a global receiver thermal efficiency of > 90% can be achieved. |
| File Format | |
| ISBN | 9780791857502 |
| DOI | 10.1115/IMECE2015-52529 |
| Volume Number | Volume 8B: Heat Transfer and Thermal Engineering |
| Conference Proceedings | ASME 2015 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2015-11-13 |
| Publisher Place | Houston, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Microscale devices High temperature Electricity (physics) Heat flux Emissions Microchannels Design Blocks (building materials) Emissivity Fluids Supercritical carbon dioxide Concentrating solar power Solar energy Flux (metallurgy) Thermal efficiency Shapes Solar radiation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|