Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Li, Huiying Sergio, A. Vasquez Spicka, Peter |
| Copyright Year | 2010 |
| Abstract | Numerical simulation of boiling flow and heat transfer presents a number of unique challenges in both theoretical modeling and developing robust numerical methodology. The major difficulty arises due to the heat transfer and phase changes between heated walls and fluid (liquid and vapor). Furthermore, modeling of the liquid-vapor interfacial transfers of momentum, heat and mass proves to be equally challenging. The multiphase boiling modeling approach described in this paper has been found to be capable of addressing these issues and is therefore suitable for inclusion in an advanced general purpose CFD solver. In the present approach, boiling flows are modeled within the framework of the Eulerian multifluid model. The governing equations solved are phase continuity, momentum and energy equations. Turbulence effects can be accounted for using mixture, dispersed or per-phase multiphase turbulence models. Wall boiling phenomena are modeled using the baseline mechanistic RPI model for nucleate boiling, and its extensions to non-equilibrium boiling and critical heat flux regime. A range of sub-models are considered to account for the interfacial momentum, mass and heat transfer, and flow regime transitions. An advanced numerical scheme has been developed for solving the model equations which can handle the heat partition between heated walls and fluid, provide for wall and interfacial mass transfer source terms in phase volume fraction equations, and address the coupling between the phase change rates and the pressure correction equation. The wall boiling models and numerical algorithm have been implemented in an advanced, general-purpose CFD code, FLUENT. Validations have been carried out for a range of 2D and 3D boiling flows, including pressurized water through a vertical pipe with heated walls, R-113 liquid in a vertical annulus with internal heated walls, a 3D BRW core channel geometry with vertical heated rods, and water in a vertical circular pipe under critical heat flux and post dry-out conditions. The results demonstrate that the wall boiling models are able to correctly predict the wall temperature and vapor volume fraction distribution. The predictions in all the cases are in reasonable good agreement with available experiments. Tests also indicate that the present implementation is fast and robust, as compared to previous approaches. All the cases are able to be simulated with the use of the FLUENT steady-state multiphase solver with reasonable numbers of iterations. |
| Starting Page | 1681 |
| Ending Page | 1692 |
| Page Count | 12 |
| File Format | |
| ISBN | 9780791844441 |
| DOI | 10.1115/IMECE2010-38785 |
| Volume Number | Volume 7: Fluid Flow, Heat Transfer and Thermal Systems, Parts A and B |
| Conference Proceedings | ASME 2010 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2010-11-12 |
| Publisher Place | Vancouver, British Columbia, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Water Vapors Rods Critical heat flux Modeling Phase transitions Wall temperature Fluids Annulus Nucleate boiling Turbulence Computer simulation Computational fluid dynamics Equilibrium (physics) Momentum Boiling Flow (dynamics) Pressure Steady state Mass transfer Geometry Heat Algorithms Pipes Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|