Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Lee, S. K. Loth, E. Liu, C. |
| Copyright Year | 2005 |
| Abstract | The feasibility of generating mono-disperse micro-bubbles by electrolysis in tap water using micro-fabricated devices was investigated towards the development of a high-density bubbler matrix. The effect of electrode geometry and size, as well as artificial nucleation sites was tested using single and arrays of electrode pairs. The results indicated that circular electrode node shapes (as opposed to triangular or square nodes) nucleated bubbles from the node center and exhibited fewer instances of bubble coalescence and a higher bubble detachment frequency when operated with small anode-anode and cathode-cathode spacings. Artificial nucleation sites, produced by etching the surface of the electrodes, were shown to be able to limit nucleation to one site (though in some cases, bubbles formed underneath the dielectric layer) as well as increase current efficiency. A device with thousands of electrode pairs (a matrix of nodes) was also fabricated in order to generate a bubble cloud close to the channel wall. At a flow speed of 14 cm/s, this device demonstrated the ability to generate a bubble cloud reasonably close to the wall 20 mm from the trailing edge of the matrix of nodes, with the void fraction peaking at 1 mm from the channel wall and returning to zero at 3 mm. It yielded efficiencies greater than similar thin-wire devices, but spurious bubbles formed on the device, indicating that additional work is needed to develop this technology in a matrix format. |
| Sponsorship | Fluids Engineering Division |
| Starting Page | 451 |
| Ending Page | 459 |
| Page Count | 9 |
| File Format | |
| ISBN | 0791842193 |
| DOI | 10.1115/IMECE2005-81895 |
| e-ISBN | 0791837696 |
| Volume Number | Fluids Engineering |
| Conference Proceedings | ASME 2005 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2005-11-05 |
| Publisher Place | Orlando, Florida, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Etching Wire Density Flow (dynamics) Nucleation (physics) Electrodes Geometry Bubbles Electrolysis Microbubbles Porosity Shapes Anodes |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|