Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Punch, Jeff Rodgers, Bryan Newport, David Davies, Mark |
| Copyright Year | 2004 |
| Abstract | Micro-scale polymerase chain reaction (micro-PCR) systems offer substantial advantages over macro-scale systems. Smaller sample volumes are required, and faster process times are feasible. Thermal control of micro-PCR systems is a substantial technical challenge, however. The PCR process requires the fluid sample to be cycled through three temperature ranges — typically 90–95°C, 50–65°C and 72–77°C for denaturation, hybridisation and replication respectively. Durations of the three steps are required to be in the ratio of 4:4:9. In this paper, the thermal analysis of a continuous flow micro-PCR device is reported. The objective of the analysis is to optimize the thermal performance of the device for fast amplification cycles with high efficiency - an efficient PCR features rapid heating and cooling between steps, and good temperature uniformity within each step. The device comprises an array of parallel microchannels formed within a polypropylene substrate to carry fluid, with the base of the substrate mounted on an aluminium carrier. Substrate depth is 500 micron, and each channel is 60 micron wide by 40 micron deep. Thermoelectric cells (TECs) are bonded to the carrier, and powered by a thermoelectric controller with feedback from sensors embedded in the carrier. A Pyrex Glass slide is bonded to the substrate to form closed channels. Arrays of film heaters mounted on the slide adjacent to the channel are used to establish the required temperature regions along the channel. By pumping the fluid at a fixed flow rate, temperature cycling of specific period is achieved. Thermal analysis of the substrate is performed using an approximate closed-form solution, in conjunction with Finite Element (FE) and Computational Fluid Dynamics (CFD) simulations. The analysis is used to conduct a parametric study in order to determine the optimum configurations of substrate materials, cooling conditions, heaters and flow rates required to impose specific temperature cycles. The use of thermoelectric cells is shown to increase the rate of change of temperature between the various regions, improving the efficiency and decreasing the cycle time of the PCR process. Cycle times of 6s or less are shown to be feasible, yielding benefits in time saved for multiple amplifications. Finally, the analysis is also used to identify the dimensionless parameters which govern the thermal characteristics of the device, illustrating the importance of the Biot number. |
| Sponsorship | Heat Transfer Division |
| Starting Page | 661 |
| Ending Page | 668 |
| Page Count | 8 |
| File Format | |
| ISBN | 079184711X |
| DOI | 10.1115/IMECE2004-59161 |
| Volume Number | Heat Transfer, Volume 1 |
| Conference Proceedings | ASME 2004 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2004-11-13 |
| Publisher Place | Anaheim, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Polymerase chain reaction (pcr) Thermal analysis Continuous-flow micro-pcr Microfluidics Microchannels Chain Flow (dynamics) |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|