Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Cassio, T. Yamamoto Rodrigo, A. Fregonesi Julio, R. Meneghini Saltara, Fabio Ferrari, Jose´ A. |
| Copyright Year | 2002 |
| Abstract | The main purpose of this paper is to acquire a better understanding of the hydroelastic interactions, which take place between oscillating flexible cylinders and fluid forces. The cylinders are subjected to currents and shear flow, and the hydrodynamic forces are estimated by CFD tools. This article presents the results of an investigation being carried out at the University of Sa˜o Paulo, in which a discrete vortex method is used to simulate the flow around a flexible cylinder. The calculations are compared with results obtained employing the quasi-steady theory, as proposed by Ferrari [2]. Also, the calculations are compared with experiments of a cantilever flexible cylinder immersed in a current, see Fujarra [6]. The reduced velocity vs. non-dimensional amplitude curve obtained in our calculations is compared with the experimental results. Visualizations of the wake indicate a hybrid mode of vortex shedding along the span. A 2S mode is found in regions of low amplitudes, changing to a 2P mode in the regions of larger amplitudes. The position of the transition of the modes varies with the reduced velocity. Our intention is to apply this model to problems occurring in the offshore industry. In this industry fluids are conveyed from the seabed to the platform through slender structures called risers. These risers are subject to shear and oscillatory flows due to currents and waves, respectively, flows with a very high degree of complexity, with changes of intensity and direction the deeper the water depth. A finite element structural model based on the Euler-Bernoulli beam theory was developed. In order to evaluate the dynamic response, a general equation of motion is solved through a numerical integration scheme in the time domain. The hydrodynamic forces are evaluated in two-dimensional strips. The technique used is the Discrete Vortex Method, which is a Lagrangian numerical scheme to simulate an incompressible and viscous fluid flow. A practical case of marine risers is also presented. In this case the results for various uniform currents acting on a single, flexible cylinder, representing a riser of 120m with 100m under water, are shown. Envelopes of maximum and minimum in-line and transverse displacements are presented. There is also a comparison of a shear flow case between the CFD numerical code with the quasi-steady theory code developed by Ferrari [2]. |
| Sponsorship | Applied Mechanics Division |
| Starting Page | 445 |
| Ending Page | 453 |
| Page Count | 9 |
| File Format | |
| ISBN | 0791836592 |
| DOI | 10.1115/IMECE2002-39042 |
| Volume Number | 5th International Symposium on Fluid Structure Interaction, Aeroelasticity, and Flow Induced Vibration and Noise |
| Conference Proceedings | ASME 2002 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2002-11-17 |
| Publisher Place | New Orleans, Louisiana, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Strips Visualization Shear flow Marine drilling risers Fluid-dynamic forces Waves Cantilevers Fluids Wakes Currents Risers (casting) Cylinders Dynamic response Vortex shedding Euler-bernoulli beam theory Computer simulation Computational fluid dynamics Fluid dynamics Equations of motion Flow (dynamics) Seabed Vortex-induced vibration Pipeline risers Vortices Ocean engineering Finite element analysis Shear (mechanics) |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|