Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Li, Hongmin Edward, A. Evans Wang, G. -X |
| Copyright Year | 2002 |
| Abstract | Numerical modeling becomes an important technique to study hydrothermal crystal growth since experimental measurements in hydrothermal autoclaves are extremely difficult due to the high pressure and high temperature growth conditions. In all existing models for hydrothermal growth, isothermal boundary conditions are assumed, although electric heaters are employed around the outside surface of the thick autoclave wall in practice. In this paper, a conjugate heat transfer model based on an industry size autoclave is developed to investigate the validity of such an assumption. The model includes not only turbulent fluid flow and heat transfer of the solution but also the heat conduction in the thick wall. The outside surfaces of the wall are under constant heat flux conditions, simulating electric resistance heating used in practice. Non-uniformity of the heat flux in the circumferential direction is also introduced in the model. The results indicate that the temperature at the solution/wall interface is far away from uniform. The isothermal wall boundary condition in previous efforts is questionable. Predictions of the isothermal wall model are analyzed. Parametric studies with the conjugate model show that total heat supply rate does not affect vertical uniformity dramatically. Heat loss can be lowered without affecting the flow and temperature fields if heaters are put half diameter or further away from the middle height (baffle) plane. |
| Sponsorship | Heat Transfer Division |
| Starting Page | 65 |
| Ending Page | 71 |
| Page Count | 7 |
| File Format | |
| ISBN | 0791836363 |
| DOI | 10.1115/IMECE2002-33709 |
| Volume Number | Heat Transfer, Volume 5 |
| Conference Proceedings | ASME 2002 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2002-11-17 |
| Publisher Place | New Orleans, Louisiana, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Crystal growth Hydrothermal Conjugate model Flow (dynamics) Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|