Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Herrmann, Marion Lippmann, Wolfgang Hurtado, Antonio |
| Copyright Year | 2009 |
| Abstract | The decommissioning of nuclear installations requires the decontamination of radioactively contaminated concrete surfaces in order to minimize the amount of radioactive waste to be disposed of as well as the exposure time of the staff during this works. The rapid progress in the development of laser technology has yielded high-performance diode lasers whose radiation can be guided over a long distance by means of glass-fibre optical units. This opens up the possibility of implementing unconventional laser-based decontamination processes. The aim of the method presented here is to combine melting and contactless ablation of a radioactively contaminated concrete surface by means of a laser beam with waste product conditioning. It is intended to design the process in such a way that a maximum of the radioactivity present at the surface is incorporated in the glass melt (= conditioning of waste products). The glassy granulate obtained is very well suited for direct final storage due to its physical and chemical properties. The portion of radioactive isotopes that are released in the process, but not incorporated during the ablation process is selectively deposited in a cooled electro-filter. To prove the effectiveness of the method, research was focused on decontamination experiments conducted on concrete samples contaminated with 137Cs, 60Co and 85Sr. Furthermore, the chemical composition of the concrete samples was varied (quartzitic, quartzitic-calcitic) to take account of the different release conditions in real concrete structures. The experiments showed that 85Sr and 60Co are highly soluble in the glass melt. Their release rate is very low as they have a relatively high boiling point. 137Cs also exhibits a great affinity to the glass melt, but is more easily released again in the high temperature range due to its low boiling point of approx. 700 °C. The released portion of 137Cs is then deposited in the upstream electro-filter. The overall assessment is that the intended decontamination process with simultaneous conditioning of waste products is basically feasible using today’s laser technology. The special advantage can be seen in the great versatility and easy control of the laser unit that is equipped with a fibre-optical system. Furthermore, laser ablation can be set up as a low-dust process, which minimizes problematic secondary contamination. |
| Sponsorship | Nuclear Engineering Division |
| Starting Page | 211 |
| Ending Page | 216 |
| Page Count | 6 |
| File Format | |
| ISBN | 9780791843550 |
| DOI | 10.1115/ICONE17-75958 |
| e-ISBN | 9780791838525 |
| Volume Number | Volume 5: Fuel Cycle and High and Low Level Waste Management and Decommissioning; Computational Fluid Dynamics (CFD), Neutronics Methods and Coupled Codes; Instrumentation and Control |
| Conference Proceedings | 17th International Conference on Nuclear Engineering |
| Language | English |
| Publisher Date | 2009-07-12 |
| Publisher Place | Brussels, Belgium |
| Access Restriction | Subscribed |
| Subject Keyword | Radioactive wastes Melting Glass Radioisotopes High temperature Laser ablation Nuclear decommissioning Laser beams Contamination Fibers Glass fibers Concretes Design Phase transition temperature Filters Dust Storage Decontamination Ablation (vaporization technology) Radiation (physics) Lasers Chemical properties Radioactivity |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|