Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Widyaparaga, Adhika Pranowo, Null |
| Copyright Year | 2013 |
| Abstract | This study aims to investigate the significance of conjugate heat transfer in the microscale within the slip regime. As within the slip regime the continuum assumption is invalid due to presence of rarefaction effects, the Lattice Boltzmann method (LBM) is employed to overcome the limitations of Navier Stokes based solutions in this regime. We have constructed and compared two case models in which a fluid of higher temperature enters a microchannel. The conditions are set to obtain Knudsen numbers which result in the slip regime being dominant. To investigate the effect of conjugate heat transfer, the two models differed in the aspect that one model did not incorporate conjugate heat transfer and while the other did. The numerical calculation was validated by comparing the velocity profile results to exact theoretical approximations and was found to agree well. The results of comparison of models Case I and Case 2 have shown that temperature profile is affected significantly by conjugate heat transfer. The conjugate heat transfer at the microchannel wall (Case 1) was shown to maintain the initial temperature of fluid longer than compared to a purely isothermal wall (Case 2), thus signifying the importance of the consideration of conjugate heat transfer effects in microfluid models. We have implemented GPU based parallel processing to reduce computation time. The result of the incorporation of GPU processing was found to increase processing speed up to 15 times. |
| Sponsorship | Fluids Engineering Division Heat Transfer Division |
| File Format | |
| ISBN | 9780791855591 |
| DOI | 10.1115/ICNMM2013-73133 |
| Conference Proceedings | ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels |
| Language | English |
| Publisher Date | 2013-06-16 |
| Publisher Place | Sapporo, Japan |
| Access Restriction | Subscribed |
| Subject Keyword | Fluids Temperature Approximation Simulation Computation Microscale devices Graphics processing units Parallel processing Lattice boltzmann methods Temperature profiles Heat transfer Microchannels |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|