Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Herdin, Rüdiger Herdin, Andreas Alten, Hans Herdin, Günther Mairegger, Dominik |
| Copyright Year | 2018 |
| Abstract | Electrical efficiency is an important factor for most of the owners of gas engines. To reach a high electrical efficiency, engine manufacturers use four valve cylinder head technology on new designed engines. The change from two valve to four valve technology, in combination with optimized charge motion, can achieve an increase of electrical efficiency up to 2.5%. A significant number of engines in the market are only equipped with two valve cylinder heads, thus leaving potential to reduce carbon emissions and fuel consumption. The scope of the paper applies to the modernization of an already well established gas engine series available on the market with a power range of 500–1100kW [1]. In the first step, the potentials were considered purely in the context of a change in configuration of the spark plug, to pre-chamber spark plug. As second step an optimization of the ports was examined. Due to the pre-existing high level of development of the combustion stage, combined with an adaption of the boost charging system, an improvement of almost 2.5% was achieved. According to data sheets, modern gas engines within this power range have efficiencies in the range of ηe ∼ 44%. The project team therefore proceeded to develop a new cylinder head along with new design leading to a better combustion. Minimizing changes around the periphery of the engine was a prerequisite in order to complete these on site as part of the 30.000-hour service. Intake- as well as exhaustport geometries were optimized with the aid of CFD tools, such that swirl and flow capacity values achieved their specified objectives. The geometries of the water jacket and valve train were also optimized through a similar methodology. These changes led to a 7% reduction in gas exchange work, which directly reflect within improved efficiency levels. Altogether, the various measures (including combustion optimization) resulted in an efficiency improvement of about 2.5% leading to an electric efficiency of 42.9%. The first endurance run shows that the mechanics match the expected technical requirements. Very low wear rates despite the increased masses of the valve train could be reached due to higher qualities in terms of materials. The paper focuses particularly on the flow optimization in conjunction with the variables surrounding the mechanic design. Finally, the test results of the pilot engines are presented alongside an economic analysis. |
| Sponsorship | Internal Combustion Engine Division |
| File Format | |
| ISBN | 9780791851999 |
| DOI | 10.1115/ICEF2018-9646 |
| Volume Number | Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development |
| Conference Proceedings | ASME 2018 Internal Combustion Engine Division Fall Technical Conference |
| Language | English |
| Publisher Date | 2018-11-04 |
| Publisher Place | San Diego, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Trains Water Economic analysis Computational fluid dynamics Gas engines Valves Fuel consumption Combustion Electrical efficiency Flow (dynamics) Carbon Engines Optimization Emissions Design Gates (closures) Wear Teams Cylinders |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|