Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Toema, Mohamed Kirby, S. Chapman |
| Copyright Year | 2010 |
| Abstract | This paper presents the work done to date on a modeling study of the Non-Selective Catalytic Reduction (NSCR) system. Several recent experimental studies indicate that the voltage signal from the heated exhaust gas oxygen sensor commonly used to control these emission reduction systems may not be interpreted correctly because of the physical nature in the way the sensor senses the exhaust gas concentration. While the current signal interpretation may be satisfactory for modest NOX and CO reduction, an improved understanding of the signal is necessary to achieve consistently low NOX and CO emission levels. The increasingly strict emission regulations may require implementing NSCR as a promising emission control technology for stationary spark ignition engines. Many recent experimental investigations that used NSCR systems for stationary natural gas fueled engines showed that NSCR systems were unable to consistently control the emissions level below the compliance limits. Modeling of NSCR components to better understand, and then exploit, the underlying physical processes that occur in the lambda sensor and the catalyst media is now considered an essential step toward improving NSCR system performance. This paper focuses only on the lambda sensor that provides feedback to the air-to-fuel ratio controller. The goals of this modeling study are: • Improve the understanding of the transport phenomena and electrochemical processes that occur within the sensor. • Investigate the cross-sensitivity of exhaust gases from natural gas fueled engines on the sensor performance. • Serve as a tool for improving NSCR control strategies. This model simulates the output from a planar switch type lambda sensor. The model consists of three modules. The first module models the multi-component mass transport through the sensor protective layer. A one dimensional mass conservation equation is used for each exhaust gas species. Diffusion fluxes are calculated using the Maxwell-Stefan equation. The second module includes all the surface catalytic reactions that take place on the sensor platinum electrodes. All kinetic reactions are modeled based on the Langmuir-Hinshelwood kinetic mechanism. The third module is responsible for simulating the reactions that occur on the electrolyte material and determining the sensor output voltage. The details of these three modules as well as a parametric study that investigates the sensitivity of the output voltage signal to various exhaust gas parameters is provided in the paper. |
| Sponsorship | Internal Combustion Engine Division |
| Starting Page | 563 |
| Ending Page | 575 |
| Page Count | 13 |
| File Format | |
| ISBN | 9780791849446 |
| DOI | 10.1115/ICEF2010-35164 |
| e-ISBN | 9780791838822 |
| Conference Proceedings | ASME 2010 Internal Combustion Engine Division Fall Technical Conference |
| Language | English |
| Publisher Date | 2010-09-12 |
| Publisher Place | San Antonio, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Air pollution control Oxygen Transport phenomena Catalysts Spark-ignition engine Control equipment Switches Fuels Modeling Diffusion (physics) Engines Emissions Exhaust systems Electrodes Gases Feedback Platinum Nitrogen oxides Electrolytes Flux (metallurgy) Sensors Signals Natural gas |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|