Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Saha, Sudipta Mahamud, Rajib Khan, Jamil Farouk, Tanvir |
| Copyright Year | 2017 |
| Abstract | Phase change driven heat transfer has been the topic of interest for a significantly long time. However, in recent years on demand sweating boosted evaporation which requires substantially less amount of the liquid medium has drawn attention as a possible way of increasing/supplementing heat transfer under convective conditions where the convective heat transfer coefficient has already reached its maximum value as well as where dry cooling is a desired objective. In this study, a numerical study is conducted to obtain insight into the ‘hybrid’ system where evaporation and convection both contribute to the heat transfer effect. The system modeled consists of evaporation of thin liquid (water) film under a laminar flow condition. The mathematical model employed consists of coupled conservation equations of mass, species, momentum and energy for the convection-evaporation domain (gaseous), with only mass and energy conservation being resolved in the liquid film domain. The evaporative mass flux is obtained from a modified Hertz-Knudsen relation which is a function of liquid-vapor interface temperature and pressure. A two-dimensional rectangular domain with a pre-prescribed thin liquid water film representative of an experiment is simulated with the developed model. The thin rectangular liquid film is heated by uniform heat flux and is placed in the convection-evaporation domain with an unheated starting length. A moving boundary mesh is applied via the“Arbitrary Lagrangian-Eulerian” technique to resolve the receding liquid interface resulting from evaporation. The prescribed relative displacement of the moving interface is calculated from the net mass flux due to evaporation and is governed by the principle of mass conservation. Simulations were conducted over a range of Reynolds number, heat flux conditions and liquid film thickness. The numerical predictions indicate that under convective-evaporative conditions the overall heat transfer coefficient increases significantly (∼factor of a five) in comparison to the purely forced convection scenario. An increase in the heat transfer coefficient is observed with Reynolds number and vice versa for film thickness. A critical Reynolds number is identified beyond which the heat transfer coefficient does not continue to increase significantly rather tends to plateau out. |
| Sponsorship | Heat Transfer Division |
| File Format | |
| ISBN | 9780791857885 |
| DOI | 10.1115/HT2017-4806 |
| Volume Number | Volume 1: Aerospace Heat Transfer; Computational Heat Transfer; Education; Environmental Heat Transfer; Fire and Combustion Systems; Gas Turbine Heat Transfer; Heat Transfer in Electronic Equipment; Heat Transfer in Energy Systems |
| Conference Proceedings | ASME 2017 Heat Transfer Summer Conference |
| Language | English |
| Publisher Date | 2017-07-09 |
| Publisher Place | Bellevue, Washington, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Forced convection Temperature Cooling Reynolds number Vapors Momentum Evaporation Film thickness Pressure Convection Heat flux Displacement Laminar flow Simulation Energy conservation Liquid films Heat transfer coefficients Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|