Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Taheri, Mehrdad Chandra, Sanjeev Mostaghimi, Javad |
| Copyright Year | 2012 |
| Abstract | In this paper, a comprehensive analytical and numerical study of conductive and convective heat transfer through high porosity metal foams is presented. In the first part a novel theoretical model for determination of effective thermal conductivity of metal foams is introduced. This general analysis can be applied to any complex array of interconnected foam cells. Assuming dodecahedron unit cell for modeling the structure of metal foams, an approximate equation for evaluation of effective thermal conductivity of foam with a known porosity is obtained. In this approximation method, unlike the previous two-dimensional (2D) models, porosity is the only geometric input parameter used for evaluation of effective thermal conductivity, while its predictions of effective thermal conductivity are in excellent agreement with the previous models. In the second part a 3D numerical model for conduction in metal foam is constructed. The foam has a square cross section and is exposed to constant temperature at both ends and constant heat flux from the sides. We assume local thermal equilibrium (LTE), i.e., the solid and fluid temperatures are to be locally equal. Comparison of the 3D numerical results to the experiments shows very good agreement. The last part of the study is concerned with the 3D numerical modeling of convective heat transfer through metal foams. Experimentally determined values of permeability and Forchheimer coefficient for 10 pores per inch (PPI) nickel foam are applied to the Brinkman-Forchheimer equation to calculate fluid flow through the foam. Local thermal equilibrium (LTE) and local thermal non-equilibrium (LTNE) methods were both employed for heat transfer simulations. While LTE method resulted in faster calculations and also did not need surface area to volume ratio (αsf) and internal convective coefficient (hsf) as its input, it was not accurate for high temperatures. LTNE should be used to obtain distinct local solid and fluid temperatures. |
| Sponsorship | Heat Transfer Division |
| Starting Page | 1013 |
| Ending Page | 1021 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791844786 |
| DOI | 10.1115/HT2012-58297 |
| Volume Number | Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer |
| Conference Proceedings | ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels |
| Language | English |
| Publisher Date | 2012-07-08 |
| Publisher Place | Rio Grande, Puerto Rico, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Metal foams Temperature Approximation Computer simulation Fluid dynamics Equilibrium (physics) High temperature Permeability Thermal equilibrium Modeling Convection Heat flux Heat conduction Fluids Simulation Thermal conductivity Nickel Porosity Engineering simulation Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|